
Fast semi-supervised regression: a geodesic nearest
neighbor approach

Amit Moscovich, Ariel Jaffe, Boaz Nadler
Department of Computer Science and Applied Mathematics

Weizmann Institute of Science
Rehovot, Israel

{amit.moscovich, ariel.jaffe, boaz.nadler}@weizmann.ac.il

Abstract

We consider semi-supervised learning methods based on a combination of
geodesic graph distances and classical nonparametric statistics. The idea is to
represent the geometry and connectivity of the unlabeled data by a single metric,
which measures shortest path distances to the labeled points. Learning is then per-
formed by applying fully-supervised methods, such as Nadaraya-Watson kernel
smoothing or k-nearest-neighbors, but with weights determined by the geodesic
graph distances. Our key contribution is a novel fast algorithm for finding the k
geodesic nearest labeled neighbors of all unlabeled data points. In typical semi-
supervised settings with a large number of unlabeled points, our algorithm is sig-
nificantly faster than standard methods to compute geodesic nearest neighbors. It
is also much faster than common spectral methods. We demonstrate the compet-
itive accuracy and runtime of our approach on a problem of indoor positioning
based on WiFi fingerprints.

1 Introduction

Consider the following learning setup: letX be an instance space and letY be the output space
which may be discrete or continuous. We assume that there is some unknown distributionDX×Y
over the product spaceX × Y with data drawn independently from it. In semi-supervised learning
(SSL) we are given both a labeled setL = {(xi, yi)}Li=1 sampled fromDX×Y , and an unlabeled
setU = {xi}ni=L+1 wheren = L + U , sampled from the marginal distributionDX . The goal is to
construct an accurate classifier or regression function using both the labeled and unlabeled data. Two
common variants of this problem aretransductiveandinductivelearning. In inductive learning, the
constructed classifier or regression function must be able to output a predicted value foranypoint in
X . In the transductive setting, on which we focus in this work, the responsey needs to be predicted
only at theU unlabeled points.

With the increasing ease and feasibility of collecting many unlabeled samples, SSL has gained im-
portance and popularity. For various reviews, seeChapelle et al.(2006); Zhu and Goldberg(2009);
Subramanya and Talukdar(2014). One approach that has received much attention in recent years is
graph-basedsemi-supervised learning. The underlying idea is to construct a weighted graph with
vertices that correspond to all the labeled and unlabeled pointsx1, . . . ,xn and edges that connect
close pairs of points. A partial list includes the Laplacian-based approach ofBelkin and Niyogi
(2004), diffusion based methods (Zhu et al., 2003), methods based on minimum graph cuts (Blum
and Chawla, 2001) and multiscale wavelet regression methods (Gavish et al., 2010). These methods
can be challenging to apply on large data sets due to their runtime complexity. For example, the
method ofBelkin and Niyogi(2004) computesO(L) eigenvectors of a largen×n matrix,Zhu et al.
(2003) inverts aU × U matrix and the algorithm ofGavish et al.(2010) performs multiple runs of
hierarchical clustering over the entire data set.

Several methods for efficient large scale semi-supervised learning on graphs have been proposed in
recent years. One class of methods reduces the dataset to a small set of prototypes (Delalleau et al.,
2005; Liu et al., 2010). A different class subsamples the edges of the graph (Herbster et al., 2009;
Vitale et al., 2013; Zhang et al., 2015).

In this paper we present a simple computationally-efficient approach to SSL on a given (and po-
tentially large) graph, that does not require its approximation. The main idea is to apply standard
learning algorithms, but base them on geodesic graph distances. As described in Section2, this is
particularly suitable when the data lies on a manifold and the response is a smooth function along it.
To apply this approach, one needs to efficiently compute, for all the unlabeled samples, their first few
geodesic nearest labeled neighbors. Our key contribution, described in Section3 and theoretically
analyzed in Section4, is a novel fast algorithm for this task. In typical semi-supervised settings with
a large number of unlabeled points our algorithm is significantly faster than standard shortest path
methods. Finally, in Section5 we demonstrate its competitive accuracy and runtime on a problem
of indoor positioning based on WiFi fingerprints. A second illustration on a dataset of facial poses
appears in the appendix.

While our focus is on semi-supervised learning, our algorithm may be relevant to other applications
as well, for example: (i) in the field of computer networking it may be used to find thek nearest
cache servers to all clients in a content delivery network; (ii) in transportation, to find shortest paths
from multiple locations to nearby points of interest; and (iii) in computer graphics, to efficiently
locate the nearest landmark points for all points on a polygon mesh.

2 Semi-Supervised Learning with geodesic distances

For the unlabeled data to aid in learning, there must be some relation between the response and the
marginal density of the unlabeled data, see for exampleSingh et al.(2009); Liang et al.(2007). One
common relation is thecluster assumption. Here, instances with the same label tend to concentrate
in well-defined clusters separated by low density regions (Rigollet, 2007; Chapelle and Zien, 2005).
A second model, at the focus of this work, isthe manifold assumption.Here, the data points are con-
tained in one or several unknown low dimensional manifolds, with nearby instances on the manifold
having similar response values. In this case, the learning problem has a lower intrinsic dimension
than that of the ambient space. The unlabeled instances can be used to learn the manifold, thus
overcoming the curse of dimensionality.

2.1 Geodesic distances in the manifold setting

Under the manifold assumption, one approach to use the unlabeled instances is to apply some nonlin-
ear dimensionality reduction procedure that maps the data to a lower dimensional space (Tenenbaum
et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003), followed by a standard learning al-
gorithm. In this approach, one needs to know or otherwise estimate the dimension of the underlying
manifold. In addition, these methods may not work well when the data lives on a union of several
possibly intersecting manifolds.

A second approach, at the focus of this paper, is todirectly learn via graph geodesic distances. Let
M be a compact submanifold ofRD with geodesic distance metricdM and letx1, . . . ,xn be points
independently sampled fromM according to some probability that is bounded away from zero. Let
G be the symmetric kNN graph corresponding to the data, wherei andj are connected ifxi is one
of thek closest neighbors ofxj or vice versa. As the number of samplesn→∞ and with a suitable
choice ofk, the shortest-path distancedG converges to the geodesic distance on the manifold (see
the supplementary toTenenbaum et al.(2000)),

dG(x,x′)
n→∞
−−−−→ dM(x,x′). (1)

One practical consequence of Eq. (1) is that if the data lies on a submanifoldM⊂ RD of intrinsic
dimensiond < D then the errors of learning procedures based on the manifold distance such as
geodesic nearest neighbors and local regression are governed by theintrinsic dimensionof the data
d rather than the extrinsic dimensionD.

2

2.2 Learning with geodesic distances

Motivated by the manifold assumption, we consider the following framework for transductive semi-
supervised learning. Given samplesxi from an instance spaceX with a distance functiond(x,x′):

1. Construct an undirected (sparse) graphG whose vertices are the set of all pointsL ∪ U =
{x1, . . . ,xn}. Pairs of distant points are assigned an edge with a large weight or no edge
at all, whereas close pairs of points are assigned edges withsmallweights, by some rule.

2. Compute the shortest-path (geodesic) graph distancedG(xi,xj) for all xi ∈ L andxj ∈ U .

3. Apply standard supervised learning algorithms using the labeled points and their geodesic
distancesdG to the unlabeled ones.

This framework generalizesBijral et al. (2011), which assumed thatx1, . . . ,xn are vectors inRD

and the distance function is a power of ap-norm ‖xi − xj‖qp. Specific graph construction rules
include theε-neighborhood cutoff and the symmetric k-NN rule, see for exampleAlamgir and von
Luxburg(2012). The elegance of this framework is that itdecouplesthe unsupervised and supervised
parts of the learning process. It represents the geometry of the labeled and unlabeled instances by
a single metricdG, subsequently enabling one to directly apply any supervised learning algorithm
based on a metric. For classification, a natural choice is thek nearest neighbors algorithm. To
classify a pointx, we find itsk nearest labeled points using the geodesic metric, and compute their
majority label. For regression problems, in analogy to the Euclidean Nadaraya-Watson estimator,
one may apply kernel smoothing, but base it instead on the geodesic distance. Here, given a kernel
K : R→ R and a bandwidthh, for any pointx ∈ U in the graphG we estimate its responsey as an
average of labeled samples, weighted by theirgeodesicdistance,

ŷ(x) =

∑
(xi,yi)∈L K(dG(xi,x)/h)yi
∑

(xi,yi)∈L K(dG(xi,x)/h)
. (2)

2.3 Main contributions and outline

There are two main computational challenges in applying the geodesic nearest neighbor framework
described above: (i) constructing the graph, and in particular efficiently finding the nearest neighbors
of all the given instances; and (ii) computing the nearest geodesic labeled instances for all unlabeled
points. The first challenge is relevant to many graph-based learning methods, and may be addressed
by various exact or approximate NN methods. In this paper we focus on the second challenge. Our
main contribution, detailed in Section3 is a novel fast algorithm for computing thek nearest labeled
vertices for all the nodes in a graph. As we show both theoretically in Section4 and empirically
in Section5.3, in typical semi-supervised settings with a large number of unlabeled samples, this
algorithm is significantly faster than standard methods.

Our work is motivated in part by the problem of indoor localization using WiFi signals. Applying
semi-supervised methods for this problem is a natural choice since (i) the amount of unlabeled data
is almost limitless, whereas labeled data is costly to acquire; and (ii) from physical principles, the
collected signals lie in a 2 or 3 dimensional manifold non-linearly embedded in a much higher
dimensional space. In Section5 we illustrate the benefits of using unlabeled data for this problem,
and the competitive performance of our algorithm in both runtime and statistical accuracy.

3 Fast geodesic nearest-neighbors

LetG = (V,E) be an undirected graph with non-negative edge weights, whose vertex setV = L∪U
is the union of the labeled verticesL and the unlabeled verticesU . How fast can we find, for every
vertex inV, its set ofk nearestlabeledvertices?

A straightforward approach to this problem is to first apply the well-known Dijkstra algorithm from
each of theL = |L| labeled points. This yields a matrix of sizeL × |V | of all pairwise shortest
graph distancesdG(s, v), wheres ∈ L andv ∈ V . Then, for every vertexv ∈ V , we obtain itsk
nearest labeled neighbors by finding the smallestk elements of the corresponding column. Recall
that the runtime of Dijkstra’s algorithm, implemented with a Fibonacci heap isO(|V | log |V | +
|E|), see for exampleDasgupta et al.(2006). For small values ofk, the second step of finding

3

thek nearest neighbors is negligible in terms of the overall run time, which is thus dominated by
O (L|V | log |V |+ L|E|).

In the special casek = 1, where one computes the single nearest labeled vertex to every vertex in a
graph, the result is known as the Voronoi diagram of the graph, with the labeled nodes acting as the
centers of the Voronoi cells. A fast algorithm for this problem was developed byErwig (2000).

Algorithm 1 Geodesic k nearest labeled neighbors

Input: An undirected weighted graphG = (V,E,w) and a set of labeled verticesL ⊆ V .
Output: For everyv ∈ V a listkNN [v] with thek nearest labeled vertices tov and their distances.

Q←PriorityQueue(),visited← φ
for v ∈ V do

kNN [v]← Empty-List()
if v ∈ L then

insert(Q, key = 0, seed = v, vertex = v)
end if

end for
while Q 6= φ do

(dist, seed, v0)← pop-minimum(Q)
visited← visited ∪ {(seed, v0)}
if length(kNN [v0]) < k then

append(dist, seed) to kNN [v0]
for all v ∈ neighbors(v0) do

if (seed, v) /∈ visited then
decrease-or-insert(Q, key = dist + w(v0, v), seed, v)

end if
end for

end if
end while

In this section we present Algorithm1, which for any k, efficiently finds the k
geodesic nearest labeled neighbors. As analyzed below, its runtime is bounded by
O (log |V | ∙min{L|V |, k|E|}+ k|E|), which can be much faster than the naïve approach.

To motivate our algorithm, it is instructive to first briefly recall Dijkstra’s shortest path algorithm.
Given a graphG = (V,E), and a seed vertexs ∈ V , Dijkstra’s algorithm keeps, for every vertex
v ∈ V , an upper bound ondG(s, v), denotedu[v], initialized to0 if v = s and to∞ otherwise. At
every iteration, the vertexv0 with the lowest upper bound is visited: For every neighborv of v0, if
u[v0] + w(v0, v) < u[v], then the current upper boundu[v] is lowered. An important invariant of
Dijkstra’s algorithm is that every time the vertexv0 with the lowest upper bound is visited, it can be
proved thatu[v0] = dG(s, v0). The correctness of Dijkstra’s algorithm follows easily from this fact.

We now give an informal description of Algorithm1. The basic idea behind it can be described as
runningL instances of Dijkstra’s algorithm "simultaneously" from all labeled vertices, combined
with early stopping wheneverk nearest labeled neighbors have been found. In the classic algorithm
of Dijkstra, every vertex is visited at most once. RunningL independent copies of Dijkstra’s algo-
rithm from theL labeled vertices would lead to every vertex inV being visitedL times (assumingG
is connected). In typical semi-supervised settings, whereL � k, this is unnecessarily slow. In our
method, for every vertex we store a list of the firstk visits to it from different labeled nodes and their
distances. Whenever a vertex is visitedk times, we stop any further processing of its neighbors. As
we show in Section4, due to this early stopping, Algorithm1 is significantly more efficient than
the naïve approach of running Dijkstra’s algorithm separately from every labeled vertex. Instead of
storing pairs(dist, v) as in Dijkstra algorithm, we store triplets(dist, seed, v) in a priority queueQ
keyed bydist, wheredist is an upper bound ondG(seed, v). Moreover, in the proof of correctness
of Algorithm 1, we show that when(dist, seed, v) is popped from the queue,dist = dG(seed, v).

The proposed algorithm can be implemented using a priority queue based on a Fibonacci heap with
the 3 standard operations: insert, pop-minimum and decrease-key. In the code of Algorithm1,
decrease-or-insert stands for decreasing the key of a pair(seed, v) if it already exists in the queue
and inserting it if not. The following theorem proves the correctness of Algorithm1, namely that its

4

output for every vertexv ∈ V is indeed the set of itsk nearest labeled points, as measured by the
geodesic graph distance.

Theorem 3.1. LetG = (V,E,w) be a graph with non-negative weights. For every vertexv ∈ V let
Lv denote the set of labeled vertices in the connected component ofv and let`v = min{k, |Lv|}.
Algorithm1 stops after a finite number of steps, such that for everyv ∈ V the output listkNN [v]
is of the formkNN [v] = [(dG(s1, v), s1), . . . , (dG(s`, v), s`v

)] wheres1, . . . , s`v
are the nearest

labeled vertices, sorted by their distance tov.

The proof appears in the Supplementary. It critically relies on the following property of shortest
paths to labeled vertices.

Lemma 3.1. Let v ∈ V be a vertex and lets be itsj-th nearest labeled vertex. Ifs u v is a
shortest path thens ∈ NLV(u, j), where NLV(u, j) is the set ofj nearest labeled vertices tou.

We note thatBijral et al. (2011) also proposed a variant of Dijkstra’s algorithm. However, their
method is an improvement ofsingle-sourceDijkstra in the setting of a dense graph constructed from
points inRD, whereas our method computes paths frommultiple sourcesand applies to any graph.

4 Transductive runtime analysis

Lemma3.1explains why Algorithm1 can stop exploring the neighbors of vertices whosek nearest
labeled neighbors were found. As Theorem4.1shows, this can lead to dramatic runtime savings.

Theorem 4.1. Given a graphG = (V,E) with L labeled vertices, the runtime of Algorithm1 is
bounded byO (k|E|+ np log |V |) wherenp is the total number of pop-minimum operations, which
satisfiesnp ≤ min{L|V |, k|E|}.

Proof. Recall that in a priority queue based on a Fibonacci heap all operations costO(1) amortized
time except pop-minimum which costslog |Q|. The runtime is dominated by the cost of all pop-
minimum operations, plus the total cost of traversing the neighbors of the examined vertices. The
latter takesO(k|E|) time. Denote the total number of pop-minimum operations bynp. We derive
two different bounds onnp. Every time a(seed, v) pair is popped fromQ, it is added to thevisited
set, which prevents future insertions of that pair intoQ. Hence, each pair(seed, v) ∈ L × V may
be popped at most once fromQ, which implies thatnp ≤ L|V |. In addition,np is bounded by the
number of insertions intoQ. First, there areL insertions during the initialization phase. Then, for
each vertexv0 ∈ V , the "if length(kNN [v0]) < k" clause can hold true at mostk times for that
vertex. Each time, the neighbors ofv0 are examined and up todeg(v0) neighbors are inserted into
Q. This yields the second bound,np ≤ L + k|E| = O(k|E|).

An immediate corollary of Theorem4.1 is that for a graphG = (V,E) of bounded degreed, the
runtime of Algorithm1 is O(kd|V | log |V |). In contrast, the runtime of the naïve approach based
on multiple Dijkstra runs isO (L|V | log |V |+ Ld|V |). Comparing these two formulas, Algorithm
1 can provide significant speedups over the naïve approach in typical cases whereL � kd. As we
illustrate empirically in Section5.3, our method is faster by a factor of 100-1000 even on graphs of
moderate size.

5 A geodesic SSL approach to indoor localization

One motivation for our work is the problem of estimating the location of a mobile device in a closed
environment using its Wi-Fi signature as received by a wireless router. This problem is gaining
considerable interest in recent years due to its many potential applications, such as indoor navigation
inside large commercial spaces (Liu et al., 2007). In indoor settings, the signal received by the router
is a superposition of multiple reflections of the same source. These reflections usually differ in their
arrival time and direction. This prevents the use of classic outdoor positioning methods such as
triangulation, which require a direct line-of-sight between the transmitting device and the receiver.

One approach to tackle this problem, known asfingerprintingin the signal processing community,
is based on nearest-neighbor search. First, a labeled set{(xi, yi)}Li=1 is collected, where the vector
xi depends on features of a signal transmitted from a known locationyi ∈ R2. These features may

5

(a)
x coordinate (m)

0 1 2 3 4 5

y
co

or
di

na
te

 (
m

)

0

1

2

3

4

5

signals
labeled locations
unlabeled locations

(b)

Figure 1: (a) 3D model of a80× 80m× 5m floor. (b) Labeled locations (green circles) were placed
on a4m grid, whereas the unlabeled locations (grey circles) were placed at random.

include the signal strength, directions of arrival, time of arrival, etc. The location of a new instance
is then estimated via non-parametric regression methods such as nearest neighbor averaging. The
resulting localization errors are typically comparable to the distance between nearby labeled points.
Therefore, for applications requiring high accuracy, recording and maintaining a suitable labeled
data set may be prohibitively expensive. On the other hand, collecting vast amounts of unlabeled
data is relatively easy, simply by recording the Wi-Fi signals of devices in the possession of indi-
viduals wandering around the venue. Hence, indoor localization seems to be a natural application
for semi-supervised methods. Moreover, due to physical principles, the space of feature vectors is
parameterized by the 2-dimensional (or 3-dimensional) location. Thus, we expect manifold based
methods to perform well in this task.

In this section we extend the supervised Multipath Fingerprinting method ofKupershtein et al.
(2013) andJaffe and Wax(2014) to a semi-supervised method using our proposed geodesic regres-
sion approach. As shown below on both simulated and real-data, our geodesic-based SSL method
yields a marked improvement in localization accuracy.

5.1 Dataset description and Graph construction

Simulated data: This data consists of 802.11 Wi-Fi signals in an artificial yet realistic environment
generated byKupershtein et al.(2013) using a 3D radio wave propagation software. The environ-
ment is an80m ×80m floor. In its center is a Wi-Fi router withp = 6 antennas. See Figure1a. At
various locations(x, y) ∈ R2, N = 8 consecutive samples of a Wi-Fi packet’s (constant) preamble
are recorded, at equally spaced time intervals of50μs. The samples are stored in a complex-valued
vectorsx,y ∈ CpN which we refer to as thesignal received from location(x, y). The simulated
signals were generated on a dense0.1m grid covering the entire area of the floor.

Real data: This data consists of actual 802.11 signals, recorded by a Wi-Fi router withp = 6
antennas placed approximately in the middle of a27m×33m office, see the supplementary for a
schematic. The transmitter was a tablet connected to the router via Wi-Fi. The signal vector of
each location(x, y) was sampledN = 8 times from every antenna. The transmitter locations were
entered manually by the operator.

Graph construction for the simulated and real datasets:The Signal Subspace Projection (SSP)
of Kupershtein et al.(2013) andJaffe and Wax(2014) is used as the fingerprint for localization.
It is based on the assumption that signals received from close locations maintain similar properties
of differential delays and directions of arrival. Hence, signals originating from nearby locations
are contained in a low dimensional subspace. The subspace around each location is used as its
signature. Specifically, the signatureP` of a locatioǹ = (x, y) ∈ R2 is computed as follows. First,
the covariance matrix of the signals in the proximity of` is computed, using all the signals in the
dataset that are inside a1m square centered around`,

R` :=
∑

`′∈R2:‖`−`′‖∞<0.5m

s`′s
∗
`′

6

10000 20000 30000 40000 50000 60000 70000

Number of unlabeled locations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ed

ia
n

er
ro

r
(m

)
KNN
Laplacian
Geodesic KNN

10000 20000 30000 40000 50000 60000 70000

Number of unlabeled locations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

M
ed

ia
n

er
ro

r
(m

)

KNN
Laplacian
Geodesic KNN

Figure 2: Median localization error vs. number of unlabeled points. The labeled points are placed
on a regular grid, with an inter-distance of 2 meters (left panel) or 4 meters (right panel).

wheres∗`′ denotes the Hermitian transpose of the column vectors`′ ∈ CpN . Next, we compute
the npc leading eigenvectors ofR`, forming a matrixV` ∈ CpN×npc . The SSP signature is the
projection matrix onto the space spanned by these eigenvectors,P` := V`V

∗
` . In our experiments,

we pickednpc = 10, though other choices in the range{8, . . . , 12} gave results that are almost as
good. The distance between pairs of locations is defined as the Frobenius norm of the difference of
their projection matrices,di,j := ‖P`i − P`j‖F .

For the simulated dataset, to mimic how a real-world semi-supervised localization system might
work, we generated the labeled locations on a regular square grid, whereas the unlabeled locations
were randomly distributed over the entire area of the floor (see Fig.1b). For the real dataset, due
to phyiscal constraints, labeled and unlabeled points were not on a regular grid (see appendix for
details). Then, we created a symmetric kNN graph by connecting every pointxi with its kG closest
neighbors, with corresponding weights given bywi,j = 1 + εdi,j . Hereε > 0 is a small constant
which gives preference to paths with smallerdi,j . We tookkG = 4 neighbors for each vertex, which
was experimentally found to be the best choice, both for the geodesick-NN and for the Laplacian
eigenvector regression. However, choosingkG ∈ {3, 5, 6} gave results that were almost as good.

To estimate the location of an unlabeled point, we considered Geodesick-NN with exponential
decaying weights such that the weight of thei-th neighbor is proportional to1/2i. Experimentally,
these exponential weights performed much better than uniform. We setk = 7 to obtain reasonable
runtimes. Note that due to the fast exponential decay of weights, larger choices ofk are expected
to yield similar results. For the Laplacian eigenvector regression, we optimized over the number of
eigenvectors by taking the best outcome after repeating the experiment with10%, 20%, 30%, 40%
and50% of the labeled points.

5.2 Results

First, we compare our semi-supervised geodesick-NN regressor to the Laplacian eigenvector re-
gression method ofBelkin and Niyogi(2004) on the artificial data set. As a baseline we applied
standardk-NN, using only the labeled samples. For each number of unlabeled samples, we chose
the valuek ∈ {1, 2, 3} that gave the best accuracy. Figure2 shows the median localization error as
a function of the number of unlabeled locations, where the labeled locations are on a fixed grid.

These results showcase the advantage of incorporating the unlabeled data in the solution to the
localization problem. As expected, the improvement achieved by the geodesick-NN increases with
the number of unlabeled locations, attaining a reduction of roughly50% in the localization error.
In addition, not only is the geodesick-NN regression more accurate than the Laplacian eigenbasis
regressor, in terms of runtime it is also much faster, see Table2.

Next, Table1 shows the mean localization error on the real Wi-Fi localization data set for different
densities of labeled points. In this benchmarks we have tested symmetrick-NN graphs withkG ∈
{4, . . . , 19} constructed as described in the previous section and used the best result obtained for
each algorithm. For the geodesick-NN, the graph distances were set to the Frobenius distances
of projection matrices, as in the previous section. We testedk ∈ {1, 2, 3}, howeverk = 1 gave
the best results in all cases. This may be due to the low number of labeled samples, as we have

7

5000 10000 15000 20000 25000 30000

Number of unlabeled locations

100

200

300

400

500

600

700

800

900

Sp
ee

du
p k=1

k=3
k=5
k=7

5000 10000 15000 20000 25000 30000

Number of unlabeled locations

0

50

100

150

200

250

300

Sp
ee

du
p

k=1
k=3
k=5
k=7

Figure 3: Relative speedup of Algorithm1 compared to the naïve approach of running Dijkstra’s
algorithm from each labeled point. (left panel) A total of1600 labeled locations are placed on a 2m
square grid. (right panel) A total of400 labeled locations are on a 4m grid.

observed similar behavior on the simulated data set when the number of labeled samples is low.
For the Laplacian eigenvector regression algorithm, we used binary weights and chose the number
of eigenvectors by testing the entire range of1, . . . , #labeled. In all cases, our geodesic approach
yielded more accurate results.

Table 1: Mean accuracy of semi-supervised localization on the real data set

Labeled point grid size Labeled points NN Geodesic NNLaplacian
1.5 meters 73 1.49 meters1.11meters 1.36meters
2.0 meters 48 2.27 meters1.49meters 1.65meters
3 meters 23 3.41 meters2.41meters 2.79meters

5.3 Runtime comparison

We empirically compare the runtime of our approach to the naïve method of running Dijkstra’s al-
gorithm from each of the labeled points. To make the comparison meaningful we implemented both
algorithms in Python, using a similar programming style and the same heap data structure. Figure3
shows the relative speedup of Algorithm1 compared to multiple Dijkstra runs. In accordance to the
theoretical analysis of Section4, the speedup is roughly proportional to1/k.

Table 2: Runtime of Geodesic 7-NN vs. time to compute Laplacian eigenvectors

#unlabeled Geodesic 7-NNLaplacian
1000 2.3 seconds 7.6seconds
10000 7 seconds 195seconds
100000 56 seconds 114minutes

Table2 compares the runtime of the geodesic k-NN method to computing eigenvectors of the Lapla-
cian matrix, using the simulated indoor localization data set with labeled locations every2m. The
number of eigenvectors was chosen to be320, which is equal to 20% of the number of labeled
points. Computing the geodesic nearest neighbors via Algorithm1 is several orders of magnitude
faster than computing the eigenvectors. This is despite the fact that the eigenvector computation
is performed using the highly optimized Intelr Math Kernel Library whereas the geodesic nearest
neighbor computation uses a simple Python implementation. We expect an efficient implementation
of geodesic k-NN to be at least 10 times faster.

References
Alamgir, M. and von Luxburg, U. (2012). Shortest path distance in random k-nn graphs.ICML 2012.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15:1373–1396.

8

Belkin, M. and Niyogi, P. (2004). Semi-Supervised Learning on Riemannian Manifolds.Machine Learning,
56:209–239.

Bijral, A. S., Ratliff, N., and Srebro, N. (2011). Semi-supervised Learning with Density Based Distances. In
27th Conference on Uncertainty in Artificial Intelligence (UAI 2011).

Blum, A. and Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. InICML.

Chapelle, O., Schölkopf, B., and Zien, A. (2006).Semi-Supervised Learning. MIT press.

Chapelle, O. and Zien, A. (2005). Semi-Supervised Classification by Low Density Separation. InAISTATS.

Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. (2006).Algorithms. McGraw-Hill, Inc.

Delalleau, O., Bengio, Y., and Le Roux, N. (2005). Efficient non-parametric function induction in semi-
supervised learning. InAISTATS.

Erwig, M. (2000). The graph Voronoi diagram with applications.Networks, 36:156–163.

Gavish, M., Nadler, B., and Coifman, R. R. (2010). Multiscale wavelets on trees, graphs and high dimensional
data: Theory and applications to semi supervised learning. InICML.

Herbster, M., Pontil, M., and Rojas-Galeano, S. (2009). Fast Prediction on a Tree. InNIPS.

Jaffe, A. and Wax, M. (2014). Single-Site Localization via Maximum Discrimination Multipath Fingerprinting.
IEEE Transactions on Signal Processing, 62(7):1718–1728.

Kupershtein, E., Wax, M., and Cohen, I. (2013). Single-site emitter localization via multipath fingerprinting.
IEEE Transactions on Signal Processing, 61(1):10–21.

Liang, F., Mukherjee, S., and West, M. (2007). The Use of Unlabeled Data in Predictive Modeling.Statistical
Science, 22(2):189–205.

Liu, H., Darabi, H., Banerjee, P., and Liu, J. (2007). Survey of wireless indoor positioning techniques and
systems.IEEE Transactions on Systems, Man and Cybernetics, 37(6):1067–1080.

Liu, W., He, J., and Chang, S.-F. (2010). Large graph construction for scalable semi-supervised learning. In
ICML.

Rigollet, P. (2007). Generalization error bounds in semi-supervised classification under the cluster assumption.
JMLR, 8:1369–1392.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding.Science,
290(5500):2323–6.

Singh, A., Nowak, R., and Zhu, X. (2009). Unlabeled data: Now it helps, now it doesn’t.NIPS.

Subramanya, A. and Talukdar, P. P. (2014). Graph-Based Semi-Supervised Learning.Synthesis Lectures on
Artificial Intelligence and Machine Learning, 8(4):1–125.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear
dimensionality reduction.Science, 290(5500):2319–23.

Vitale, F., Cesa-Bianchi, N., Gentile, C., and Zappella, G. (2013). Random spanning trees and the prediction
of weighted graphs.JMLR, 14(1):1251–1284.

Zhang, Y.-M., Huang, K., Geng, G.-G., and Liu, C.-L. (2015). MTC: A Fast and Robust Graph-Based Trans-
ductive Learning Method.IEEE Trans. Neural Net. Learning Sys., 26(9):1979–1991.

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic
functions.ICML.

Zhu, X. and Goldberg, A. B. (2009).Introduction to semi-supervised learning. Morgan & Claypool Publishers.

9

	Introduction
	Semi-Supervised Learning with geodesic distances
	Geodesic distances in the manifold setting
	Learning with geodesic distances
	Main contributions and outline

	Fast geodesic nearest-neighbors
	Transductive runtime analysis
	A geodesic SSL approach to indoor localization
	Dataset description and Graph construction
	Results
	Runtime comparison

