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Abstract

We consider semi-supervised learning methods based on a combination of
geodesic graph distances and classical nonparametric statistics. The idea is to
represent the geometry and connectivity of the unlabeled data by a single metric,
which measures shortest path distances to the labeled points. Learning is then per-
formed by applying fully-supervised methods, such as Nadaraya-Watson kernel
smoothing or k-nearest-neighbors, but with weights determined by the geodesic
graph distances. Our key contribution is a novel fast algorithm for finding the k
geodesic nearest labeled neighbors of all unlabeled data points. In typical semi-
supervised settings with a large number of unlabeled points, our algorithm is sig-
nificantly faster than standard methods to compute geodesic nearest neighbors. It
is also much faster than common spectral methods. We demonstrate the compet-
itive accuracy and runtime of our approach on a problem of indoor positioning
based on WiFi fingerprints.

1 Introduction

Consider the following learning setup: |&t be an instance space and )tbe the output space

which may be discrete or continuous. We assume that there is some unknown distributign

over the product spac® x ) with data drawn independently from it. In semi-supervised learning
(SSL) we are given both a labeled s&t= {(x;,y;)}%, sampled fronDx ., and an unlabeled

setd = {x;};_; ., wheren = L + U, sampled from the marginal distributidny. The goal is to
construct an accurate classifier or regression function using both the labeled and unlabeled data. Two
common variants of this problem amansductiveandinductivelearning. In inductive learning, the
constructed classifier or regression function must be able to output a predicted valoggoint in

X. In the transductive setting, on which we focus in this work, the respgnseds to be predicted

only at theU unlabeled points.

With the increasing ease and feasibility of collecting many unlabeled samples, SSL has gained im-
portance and popularity. For various reviews, 8éapelle et al(2006); Zhu and Goldberg2009);
Subramanya and Talukdé014). One approach that has received much attention in recent years is
graph-basedsemi-supervised learning. The underlying idea is to construct a weighted graph with
vertices that correspond to all the labeled and unlabeled prints ., x,, and edges that connect
close pairs of points. A partial list includes the Laplacian-based approaBelkin and Niyogi

(2004, diffusion based methodZlu et al, 2003, methods based on minimum graph cufum

and Chawla2001) and multiscale wavelet regression methaday(ish et al.2010. These methods

can be challenging to apply on large data sets due to their runtime complexity. For example, the
method ofBelkin and Niyogi(2004 computesD (L) eigenvectors of a large x n matrix, Zhu et al.

(2003 inverts aU x U matrix and the algorithm oBavish et al(2010 performs multiple runs of
hierarchical clustering over the entire data set.



Several methods for efficient large scale semi-supervised learning on graphs have been proposed in
recent years. One class of methods reduces the dataset to a small set of profygdéesa( et al.

2005 Liu et al, 2010. A different class subsamples the edges of the gréfanl(ster et a).2009

Vitale et al, 2013 Zhang et al.2015.

In this paper we present a simple computationally-efficient approach to SSL on a given (and po-
tentially large) graph, that does not require its approximation. The main idea is to apply standard
learning algorithms, but base them on geodesic graph distances. As described in Zabiois
particularly suitable when the data lies on a manifold and the response is a smooth function along it.
To apply this approach, one needs to efficiently compute, for all the unlabeled samples, their first few
geodesic nearest labeled neighbors. Our key contribution, described in Sgatidntheoretically
analyzed in Sectio4, is a novel fast algorithm for this task. In typical semi-supervised settings with

a large number of unlabeled points our algorithm is significantly faster than standard shortest path
methods. Finally, in Sectioh we demonstrate its competitive accuracy and runtime on a problem
of indoor positioning based on WiFi fingerprints. A second illustration on a dataset of facial poses
appears in the appendix.

While our focus is on semi-supervised learning, our algorithm may be relevant to other applications
as well, for example: (i) in the field of computer networking it may be used to find: thearest
cache servers to all clients in a content delivery network; (i) in transportation, to find shortest paths
from multiple locations to nearby points of interest; and (iii) in computer graphics, to efficiently
locate the nearest landmark points for all points on a polygon mesh.

2 Semi-Supervised Learning with geodesic distances

For the unlabeled data to aid in learning, there must be some relation between the response and the
marginal density of the unlabeled data, see for exar8pigh et al(2009; Liang et al.(2007). One
common relation is theluster assumptianHere, instances with the same label tend to concentrate

in well-defined clusters separated by low density regidtigdllet, 2007 Chapelle and Zier20095.

A second model, at the focus of this worktl® manifold assumptiotdere, the data points are con-

tained in one or several unknown low dimensional manifolds, with nearby instances on the manifold
having similar response values. In this case, the learning problem has a lower intrinsic dimension
than that of the ambient space. The unlabeled instances can be used to learn the manifold, thus
overcoming the curse of dimensionality.

2.1 Geodesic distances in the manifold setting

Under the manifold assumption, one approach to use the unlabeled instances is to apply some nonlin-
ear dimensionality reduction procedure that maps the data to a lower dimensionallgrargaum

et al, 200Q Roweis and SauR00Q Belkin and Niyogj 2003, followed by a standard learning al-
gorithm. In this approach, one needs to know or otherwise estimate the dimension of the underlying
manifold. In addition, these methods may not work well when the data lives on a union of several
possibly intersecting manifolds.

A second approach, at the focus of this paper, iditectly learn via graph geodesic distances. Let
M be a compact submanifold & with geodesic distance metri, and letx, . . ., x,, be points
independently sampled froriv! according to some probability that is bounded away from zero. Let
G be the symmetric KNN graph corresponding to the data, whanelj are connected ik; is one

of thek closest neighbors of; or vice versa. As the number of samples- oo and with a suitable
choice ofk, the shortest-path distande: converges to the geodesic distance on the manifold (see
the supplementary tdenenbaum et a(2000),

da(x,x") 2225 dag(x,x). Q)

One practical consequence of Ed) is that if the data lies on a submanifold ¢ R of intrinsic
dimensiond < D then the errors of learning procedures based on the manifold distance such as
geodesic nearest neighbors and local regression are governedibirittec dimensiorof the data

d rather than the extrinsic dimensidn



2.2 Learning with geodesic distances

Motivated by the manifold assumption, we consider the following framework for transductive semi-
supervised learning. Given samptesfrom an instance spack with a distance functiod(x, x’):

1. Construct an undirected (sparse) graptvhose vertices are the set of all poits) U/ =
{x1,...,x,}. Pairs of distant points are assigned an edge with a large weight or no edge
at all, whereas close pairs of points are assigned edgesmihweights, by some rule.

2. Compute the shortest-path (geodesic) graph disiénce;, x;) for all x; € £ andx; € U.

3. Apply standard supervised learning algorithms using the labeled points and their geodesic
distancesi to the unlabeled ones.

This framework generalizeBijral et al. (2011), which assumed that,, ..., x, are vectors irR”

and the distance function is a power opaorm |x; — x;||4. Specific graph construction rules
include thee-neighborhood cutoff and the symmetric k-NN rule, see for exarfdengir and von
Luxburg(2012. The elegance of this framework is thatiécoupleshe unsupervised and supervised

parts of the learning process. It represents the geometry of the labeled and unlabeled instances by
a single metrial, subsequently enabling one to directly apply any supervised learning algorithm
based on a metric. For classification, a natural choice issthearest neighbors algorithm. To
classify a pointk, we find itsk nearest labeled points using the geodesic metric, and compute their
majority label. For regression problems, in analogy to the Euclidean Nadaraya-Watson estimator,
one may apply kernel smoothing, but base it instead on the geodesic distance. Here, given a kernel
K : R — R and a bandwidtlh, for any pointx € U/ in the graphG we estimate its respongeas an
average of labeled samples, weighted by thewmdesiaistance,

A(X) _ Z(xi,yi)eﬁ K(dG(Xi7 X)/h)yz
= Z(xl',yl)e”i K(dg(x;,%x)/h)

)

2.3 Main contributions and outline

There are two main computational challenges in applying the geodesic nearest neighbor framework
described above: (i) constructing the graph, and in particular efficiently finding the nearest neighbors
of all the given instances; and (ii) computing the nearest geodesic labeled instances for all unlabeled
points. The first challenge is relevant to many graph-based learning methods, and may be addressed
by various exact or approximate NN methods. In this paper we focus on the second challenge. Our
main contribution, detailed in Secti@is a novel fast algorithm for computing thenearest labeled
vertices for all the nodes in a graph. As we show both theoretically in Seétaord empirically

in Section5.3, in typical semi-supervised settings with a large number of unlabeled samples, this
algorithm is significantly faster than standard methods.

Our work is motivated in part by the problem of indoor localization using WiFi signals. Applying
semi-supervised methods for this problem is a natural choice since (i) the amount of unlabeled data
is almost limitless, whereas labeled data is costly to acquire; and (ii) from physical principles, the
collected signals lie in a 2 or 3 dimensional manifold non-linearly embedded in a much higher
dimensional space. In Sectiéwe illustrate the benefits of using unlabeled data for this problem,
and the competitive performance of our algorithm in both runtime and statistical accuracy.

3 Fast geodesic nearest-neighbors

LetG = (V, E) be an undirected graph with non-negative edge weights, whose vertéxsetUi/
is the union of the labeled verticgsand the unlabeled verticés How fast can we find, for every
vertex inV its set ofk nearestabeledvertices?

A straightforward approach to this problem is to first apply the well-known Dijkstra algorithm from
each of thel. = |£] labeled points. This yields a matrix of siZex |V| of all pairwise shortest
graph distanced (s, v), wheres € £ andv € V. Then, for every vertex € V, we obtain itsk
nearest labeled neighbors by finding the smallestements of the corresponding column. Recall
that the runtime of Dijkstra’s algorithm, implemented with a Fibonacci heap({%| log|V| +

|E|), see for exampl®asgupta et al(200§. For small values of;, the second step of finding



the k& nearest neighbors is negligible in terms of the overall run time, which is thus dominated by
O (L|V|log|V| + L|E)).

In the special cask = 1, where one computes the single nearest labeled vertex to every vertex in a
graph, the result is known as the Voronoi diagram of the graph, with the labeled nodes acting as the
centers of the Voronoi cells. A fast algorithm for this problem was developdghvig (2000.

Algorithm 1 Geodesic k nearest labeled neighbors

Input:  An undirected weighted grapii = (V, F, w) and a set of labeled vertic&sC V.
Output: For everyy € V alistkN N[v] with thek nearest labeled verticestand their distances.
@ —PriorityQueue(),visited < ¢
for v € V do
kN Nv] «— Empty-List)
if v € L then
inser(Q, key = 0, seed = v, vertex = v)
end if
end for
while QQ # ¢ do
(dist, seed, vg) < pop-minimun{Q)
visited « visited U {(seed, vg)}
if length(kNNvg]) < k then
append (dist, seed) to kN N [vg]
for all v € neighbor$uv,) do
if (seed,v) ¢ visited then
decrease-or-inséf), key = dist + w(vg, v), seed, v)
end if
end for
end if
end while

In this section we present Algorithml, which for any k, efficiently finds the k
geodesic nearest labeled neighbors. As analyzed below, its runtime is bounded by
O (log|V| - min{L|V|, k| E|} + k| E|), which can be much faster than the naive approach.

To motivate our algorithm, it is instructive to first briefly recall Dijkstra’s shortest path algorithm.
Given a graphG = (V, E), and a seed vertex € V, Dijkstra’s algorithm keeps, for every vertex

v € V, an upper bound odg (s, v), denotedu[v], initialized to0 if v = s and tooco otherwise. At
every iteration, the vertex, with the lowest upper bound is visited: For every neighbof v, if
ufvg] + w(ve,v) < wlv], then the current upper boundv] is lowered. An important invariant of
Dijkstra’s algorithm is that every time the vertex with the lowest upper bound is visited, it can be
proved that[vg] = d (s, vo). The correctness of Dijkstra’s algorithm follows easily from this fact.

We now give an informal description of Algorithdn The basic idea behind it can be described as
running L instances of Dijkstra’s algorithm "simultaneously" from all labeled vertices, combined
with early stopping whenevér nearest labeled neighbors have been found. In the classic algorithm
of Dijkstra, every vertex is visited at most once. Runnihngndependent copies of Dijkstra’s algo-
rithm from theL labeled vertices would lead to every verteXirbeing visitedLZ times (assumings

is connected). In typical semi-supervised settings, wiiexe k, this is unnecessarily slow. In our
method, for every vertex we store a list of the fitstisits to it from different labeled nodes and their
distances. Whenever a vertex is visiteimes, we stop any further processing of its neighbors. As
we show in Sectior, due to this early stopping, Algorithrhis significantly more efficient than

the naive approach of running Dijkstra’s algorithm separately from every labeled vertex. Instead of
storing pairgdist, v) as in Dijkstra algorithm, we store tripletdist, seed, v) in a priority queu&y
keyed bydist, wheredist is an upper bound od; (seed, v). Moreover, in the proof of correctness

of Algorithm 1, we show that whe(dist, seed, v) is popped from the queuéist = dg(seed, v).

The proposed algorithm can be implemented using a priority queue based on a Fibonacci heap with
the 3 standard operations: insert, pop-minimum and decrease-key. In the code of Algbrithm
decrease-or-insert stands for decreasing the key of g gpaid, v) if it already exists in the queue

and inserting it if not. The following theorem proves the correctness of Algorithmamely that its



output for every vertex € V is indeed the set of its nearest labeled points, as measured by the
geodesic graph distance.

Theorem 3.1. LetG = (V, E, w) be a graph with non-negative weights. For every vertexV’ let
L, denote the set of labeled vertices in the connected componerdraf let/, = min{k, |£,|}.
Algorithm 1 stops after a finite number of steps, such that for eveey V' the output listk N N [v]
is of the formkNN[v] = [(dg(s1,v),81),- .., (dc(se,v), s¢,)] Wheresy, ..., sy, are the nearest
labeled vertices, sorted by their distancesto

The proof appears in the Supplementary. It critically relies on the following property of shortest
paths to labeled vertices.

Lemma 3.1. Letv € V be a vertex and let be itsj-th nearest labeled vertex. §f~ v ~ vis a
shortest path them € NLV(«, j), where NLVu, j) is the set ofj nearest labeled vertices ta

We note thaBijral et al. (2011) also proposed a variant of Dijkstra’s algorithm. However, their
method is an improvement efngle-sourcdijkstra in the setting of a dense graph constructed from
points inR?, whereas our method computes paths framitiple sourcesaind applies to any graph.

4 Transductive runtime analysis

Lemma3.1explains why Algorithml can stop exploring the neighbors of vertices whbsearest
labeled neighbors were found. As Theorértishows, this can lead to dramatic runtime savings.

Theorem 4.1. Given a graphG = (V, E) with L labeled vertices, the runtime of Algorithinis
bounded by (k| E| 4+ n, log |V|) wheren,, is the total number of pop-minimum operations, which
satisfiesr, < min{L|V|, k| E|}.

Proof. Recall that in a priority queue based on a Fibonacci heap all operation® cosamortized
time except pop-minimum which coslisg |@|. The runtime is dominated by the cost of all pop-
minimum operations, plus the total cost of traversing the neighbors of the examined vertices. The
latter takesO(k|E|) time. Denote the total number of pop-minimum operationsipy We derive
two different bounds on,,. Every time &(seed, v) pair is popped frong), it is added to theisited
set, which prevents future insertions of that pair ig¢oHence, each pairseed, v) € £ x V may
be popped at most once frog, which implies that:, < L|V|. In addition,n,, is bounded by the
number of insertions int@). First, there ard. insertions during the initialization phase. Then, for
each vertexy € V, the "if length(kNN|vp]) < k" clause can hold true at mokttimes for that
vertex. Each time, the neighbors«f are examined and up tteg(vo) neighbors are inserted into
Q. This yields the second bound, < L + k|E| = O(k|E|). O

An immediate corollary of Theorerh.1is that for a graptG = (V, E) of bounded degreé, the
runtime of Algorithm1 is O(kd|V|log|V]). In contrast, the runtime of the naive approach based
on multiple Dijkstra runs i) (L|V|log |[V'| + Ld|V|). Comparing these two formulas, Algorithm

1 can provide significant speedups over the naive approach in typical casesiwberel. As we
illustrate empirically in SectioB.3, our method is faster by a factor of 100-1000 even on graphs of
moderate size.

5 A geodesic SSL approach to indoor localization

One motivation for our work is the problem of estimating the location of a mobile device in a closed
environment using its Wi-Fi signature as received by a wireless router. This problem is gaining
considerable interest in recent years due to its many potential applications, such as indoor navigation
inside large commercial spacédsy( et al,, 2007). In indoor settings, the signal received by the router

is a superposition of multiple reflections of the same source. These reflections usually differ in their
arrival time and direction. This prevents the use of classic outdoor positioning methods such as
triangulation, which require a direct line-of-sight between the transmitting device and the receiver.

One approach to tackle this problem, knowrfiagerprintingin the signal processing community,
is based on nearest-neighbor search. First, a labelgdsgety; )}~ is collected, where the vector
x; depends on features of a signal transmitted from a known locgtienR?. These features may
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Figure 1: (a) 3D model of &0 x 80m x 5m floor. (b) Labeled locations (green circles) were placed
on a4m grid, whereas the unlabeled locations (grey circles) were placed at random.

include the signal strength, directions of arrival, time of arrival, etc. The location of a new instance

is then estimated via non-parametric regression methods such as nearest neighbor averaging. The
resulting localization errors are typically comparable to the distance between nearby labeled points.
Therefore, for applications requiring high accuracy, recording and maintaining a suitable labeled
data set may be prohibitively expensive. On the other hand, collecting vast amounts of unlabeled
data is relatively easy, simply by recording the Wi-Fi signals of devices in the possession of indi-
viduals wandering around the venue. Hence, indoor localization seems to be a natural application
for semi-supervised methods. Moreover, due to physical principles, the space of feature vectors is
parameterized by the 2-dimensional (or 3-dimensional) location. Thus, we expect manifold based
methods to perform well in this task.

In this section we extend the supervised Multipath Fingerprinting methddupgrshtein et al.

(2013 andJaffe and Wax2014) to a semi-supervised method using our proposed geodesic regres-
sion approach. As shown below on both simulated and real-data, our geodesic-based SSL method
yields a marked improvement in localization accuracy.

5.1 Dataset description and Graph construction

Simulated data: This data consists of 802.11 Wi-Fi signals in an atrtificial yet realistic environment
generated bKupershtein et al(2013 using a 3D radio wave propagation software. The environ-
ment is ar80m x 80m floor. In its center is a Wi-Fi router with = 6 antennas. See Figula At
various locationgz, y) € R?, N = 8 consecutive samples of a Wi-Fi packet's (constant) preamble
are recorded, at equally spaced time intervalSOpfs. The samples are stored in a complex-valued
vectors, , € CPN which we refer to as theignal received from locatior{z, y). The simulated
signals were generated on a defisen grid covering the entire area of the floor.

Real data: This data consists of actual 802.11 signals, recorded by a Wi-Fi routerpwith6
antennas placed approximately in the middle &ffan x 33m office, see the supplementary for a
schematic. The transmitter was a tablet connected to the router via Wi-Fi. The signal vector of
each locatior(z, y) was sampledV = 8 times from every antenna. The transmitter locations were
entered manually by the operator.

Graph construction for the simulated and real datasets:The Signal Subspace Projection (SSP)

of Kupershtein et al(2013 and Jaffe and Wax2014) is used as the fingerprint for localization.

It is based on the assumption that signals received from close locations maintain similar properties
of differential delays and directions of arrival. Hence, signals originating from nearby locations
are contained in a low dimensional subspace. The subspace around each location is used as its
signature. Specifically, the signatuPe of a location/ = (x,y) € R? is computed as follows. First,

the covariance matrix of the signals in the proximity/ds computed, using all the signals in the
dataset that are insidelan square centered arouid

Rg = E Sglsz/

0 ER2:|[{—10]| 00 <0.5m
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Figure 2: Median localization error vs. number of unlabeled points. The labeled points are placed
on a regular grid, with an inter-distance of 2 meters (left panel) or 4 meters (right panel).

wheres;, denotes the Hermitian transpose of the column vestore CPY. Next, we compute

the n,,. leading eigenvectors ak,, forming a matrixV, € CPV*"». The SSP signature is the
projection matrix onto the space spanned by these eigenvegiors; V;V,*. In our experiments,

we pickedn,. = 10, though other choices in the ran{®, . .., 12} gave results that are almost as
good. The distance between pairs of locations is defined as the Frobenius norm of the difference of
their projection matricesl; ; := || Py, — Py, | r.

For the simulated dataset, to mimic how a real-world semi-supervised localization system might
work, we generated the labeled locations on a regular square grid, whereas the unlabeled locations
were randomly distributed over the entire area of the floor (see Hig. For the real dataset, due

to phyiscal constraints, labeled and unlabeled points were not on a regular grid (see appendix for
details). Then, we created a symmetric KNN graph by connecting everypoiith its ks closest
neighbors, with corresponding weights givendy; = 1 + ed; ;. Heree > 0 is a small constant

which gives preference to paths with smatlgr. We tookks = 4 neighbors for each vertex, which

was experimentally found to be the best choice, both for the geodlddid and for the Laplacian
eigenvector regression. However, choosiage {3, 5,6} gave results that were almost as good.

To estimate the location of an unlabeled point, we considered Geokld¢it with exponential
decaying weights such that the weight of tha neighbor is proportional tb/2¢. Experimentally,

these exponential weights performed much better than uniform. We=e€t to obtain reasonable
runtimes. Note that due to the fast exponential decay of weights, larger choitemr®fexpected

to yield similar results. For the Laplacian eigenvector regression, we optimized over the number of
eigenvectors by taking the best outcome after repeating the experimentOf#ti20%, 30%, 40%
and50% of the labeled points.

5.2 Results

First, we compare our semi-supervised geodésiN regressor to the Laplacian eigenvector re-
gression method dBelkin and Niyogi(2004 on the artificial data set. As a baseline we applied
standardk-NN, using only the labeled samples. For each number of unlabeled samples, we chose
the valuek € {1, 2, 3} that gave the best accuracy. Fig@rshows the median localization error as
a function of the number of unlabeled locations, where the labeled locations are on a fixed grid.

These results showcase the advantage of incorporating the unlabeled data in the solution to the
localization problem. As expected, the improvement achieved by the geddi$idncreases with

the number of unlabeled locations, attaining a reduction of rougbly in the localization error.

In addition, not only is the geodesicNN regression more accurate than the Laplacian eigenbasis
regressor, in terms of runtime it is also much faster, see Table

Next, Tablel shows the mean localization error on the real Wi-Fi localization data set for different
densities of labeled points. In this benchmarks we have tested symméiicgraphs withkg €
{4,...,19} constructed as described in the previous section and used the best result obtained for
each algorithm. For the geodesteNN, the graph distances were set to the Frobenius distances

of projection matrices, as in the previous section. We tekted {1, 2,3}, howeverk = 1 gave

the best results in all cases. This may be due to the low number of labeled samples, as we have
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Figure 3: Relative speedup of Algorithtncompared to the naive approach of running Dijkstra’s
algorithm from each labeled point. (left panel) A totalléf0 labeled locations are placed on a 2m
square grid. (right panel) A total @0 labeled locations are on a 4m grid.

observed similar behavior on the simulated data set when the number of labeled samples is low.
For the Laplacian eigenvector regression algorithm, we used binary weights and chose the number
of eigenvectors by testing the entire rangel of. . , #labeled. In all cases, our geodesic approach
yielded more accurate results.

Table 1: Mean accuracy of semi-supervised localization on the real data set

Labeled point grid size  Labeled points NN Geodesic NNaplacian

1.5 meters 73 1.49 metersl.11meters 1.36neters
2.0 meters 48 2.27 metersl.49meters 1.65neters
3 meters 23 3.41 meters2.41meters 2.79neters

5.3 Runtime comparison

We empirically compare the runtime of our approach to the naive method of running Dijkstra’s al-
gorithm from each of the labeled points. To make the comparison meaningful we implemented both
algorithms in Python, using a similar programming style and the same heap data structure3 Figure
shows the relative speedup of Algoritiihrtompared to multiple Dijkstra runs. In accordance to the
theoretical analysis of Sectiah the speedup is roughly proportionallipk.

Table 2: Runtime of Geodesic 7-NN vs. time to compute Laplacian eigenvectors
#unlabeled Geodesic 7-NN Laplacian

1000 2.3 seconds 7<econds
10000 7 seconds 1%econds
100000 56 seconds 1Minutes

Table2 compares the runtime of the geodesic k-NN method to computing eigenvectors of the Lapla-
cian matrix, using the simulated indoor localization data set with labeled locations 2ueryhe
number of eigenvectors was chosen to326, which is equal to 20% of the number of labeled
points. Computing the geodesic nearest neighbors via Algoritiisrseveral orders of magnitude
faster than computing the eigenvectors. This is despite the fact that the eigenvector computation
is performed using the highly optimized IrffeMath Kernel Library whereas the geodesic nearest
neighbor computation uses a simple Python implementation. We expect an efficient implementation
of geodesic k-NN to be at least 10 times faster.
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