1/64

Semi-supervised
regression on unknown
manifolds

Yale Applied Math

Amit Moscovich
Joint with Ariel Jaffe and Boaz Nadler

January 10, 2018



2/64

Outline

Introduction to semi-supervised regression

v

Geodesic knn regression

v

Efficient computation

v

Applications

v



3/64

Introduction to
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Supervised regression
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Supervised regression

Input:
» n labeled pairs (x1,y1), ..., (Xn, ¥n) € RP x R

Assumptions:
i.i.d.
> (Xi7_yi) ~
» y; = f(x;) + noise

Output:
» Regression estimator f R SR
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Input:
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» m unlabeled instances X, 1,...X,m

Output: (transductive) regression estimates

f’:\(xn_|_]_)7 ey '?(Xn—km)
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Semi-supervised regression

Input:
» n labeled instances (x1, 1), -, (Xn, ¥n)
» m unlabeled instances X, 1,...X,m

Output: (transductive) regression estimates
f(xn+l)7 SR f(xn+m)
Output: (inductive) regression estimator

f-RP - R
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Method 1: Laplacian Regularization
[Zhu, Ghahramani, Lafferty 2003]

Given affinities w; ;, find f that minimizes
A A 2 AF A
S wiy (Fix) = () = FTLF
IJ

Subject to f(x;) = y; for labeled points.
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Method 1: Laplacian Regularization
[Zhu, Ghahramani, Lafferty 2003]

Given affinities w; ;, find f that minimizes
A A 2 AF A
> iy (Fix) = Fx)) = FTLF
IJ
Subject to f(x;) = y; for labeled points.

Reminder: the (unweighted) graph Laplacian is
L =W — D where W are the edge weights and D is
the diagonal degree matrix D;; = Zj W;.
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Method 1: Laplacian Regularization

Disadvantage: pathological behavior when the
number of unlabeled points — oo [Nadler, Srebro,
Zhou 2009]
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[Belkin&Niyogi (2004)]
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Method 2: Laplacian eigenvector
regression

[Belkin&Niyogi (2004)]

(i) Construct (weighted) graph Laplacian

(i) Compute p Laplacian eigenvectors with
smallest eigenvalues

(iii) Find a linear combination of the eigenvectors
that approximates the labeled points
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Laplacian eigenvectors

Figure: All 64 Laplacian eigenvectors of an 8x8 grid (image by Deveore)
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Laplacian eigenvectors

:

Figure: First 5 Laplacian eigenvectors for points on a 2D
man-shaped manlf0|d Surface (image by Franck Hétroy)
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Method 3: Multiscale wavelets
[Gavish, Nadler, Coifman 2010}

(i) Construct a tree of point sets by hierarchical
partitioning.
(i) Take Haar-like wavelet basis on tree.
(iii) Perform regression using this basis.
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Method 3: Multiscale wavelets

W
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Semi-supervised regression

Many other methods have been proposed
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Semi-supervised regression

Many other methods have been proposed

Empirically, unlabeled data helpful only on some
data sets

Better theoretical understanding needed
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Why should unlabeled data help?

The cluster assumption:

» Points belong to distinct clusters.
» Points in same cluster have similar responses
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Why should unlabeled data help?

The cluster assumption:

» Points belong to distinct clusters.
» Points in same cluster have similar responses

~
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Why should unlabeled data help?

A direct solution for clustered data: [Rigollet
(2007), Lafferty & Wasserman (2009)]:

» Estimate clusters.
» Compute the cluster-average response
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benefit of SSL in this setting.
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Why should unlabeled data help?

A direct solution for clustered data: [Rigollet
(2007), Lafferty & Wasserman (2009)]:

» Estimate clusters.
» Compute the cluster-average response

Singh, Nowak & Zhu (2009) analyzed the potential
benefit of SSL in this setting.

Their key insight: unlabeled data can help
estimate cluster boundaries
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Why should unlabeled data help?

The manifold assumption:

» Points lie close to a low-dimensional manifold.
» Responses vary slowly w.r.t. the geodesic
distance.
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Why should unlabeled data help?

Main idea

Given enough data points, we can:
(i) Estimate the manifold geometry
(ii) Perform regression in dimension d instead of D
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Why should unlabeled data help?

Main idea

Given enough data points, we can:
(i) Estimate the manifold geometry
(ii) Perform regression in dimension d instead of D

Unlabeled data may be key to (i).
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How can unlabeled data help?

A naive approach:
(i) Estimate the intrinsic dimension d
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How can unlabeled data help?

A naive approach:
(i) Estimate the intrinsic dimension d
(i) Embed x1,...Xp1m — RY somehow
(i) Apply classical methods in R

Problem: It is not always possible to faithfully
embed to dimension d.
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Lower bounds of nonparametric regression

Minimax lower-bound for the MSE:

Let L > 0 be a constant and let x € RP be some
point. For any regression estimator f:RP - R
there exists an L-Lipschitz function f and an
input distribution such that

E(f(x) — f(x))? > cn 7o
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Lower bound of nonparametric regression

Any estimator that satisfies for all f
E(f(x) — f(x))? < ¢'n"zi0

is called minimax optimal. (e.g. knn regression)
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Nonparametric regression on manifolds

Theorem: [Kpotufe (2011)]

If the points X, ..., x, € RP are sampled from a
d-dimensional manifold and if f is Lipschitz then
classic knn regression satisfies

~ 2 . ,
sup (fknn(xi) - f(X,)) = Op(n_ﬂ)
xeM

Caveat: xi,...,x, must form a dense cover of M



22/64

Nonparametric regression on manifolds

Theorem: [Niyogi (2013)]
There are manifolds for which semi-supervised
learning is provably better than supervised
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Our results
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Our results

We prove that if the number of unlabeled points is
sufficiently large then semi-supervised regression can
: e .. 2

achieve the finite-sample minimax bound n~ 2+

This settles a conjecture by Goldberg, Zhu, Singh,
Xu & Nowak (2009).

Furthermore, we do this using a simple and fast
method that demonstrates good empirical
performance.
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Geodesic knn regression - intuition

s Geodesic nearest
R , ® “ labeled neighbor

@.— Euclidean nearest
labeled neighbor
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Geodesic knn regression

Step 1
Estimate the manifold geodesic distance du(x;, X;)
for every pair {(x;,x;) : x; € £, x; € LUU}.
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Geodesic knn regression

Step 1
Estimate the manifold geodesic distance du(x;, X;)
for every pair {(x;,x;) : x; € £, x; € LUU}.

Step 2
Apply knn regression using the estimated distances
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Step 1: estimate geodesic distances
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Step 1: estimate geodesic distances
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Step 2: geodesic knn regression

Step 2
Let knng(x;) C L denote the set of k nearest
labeled neighbors to x;

The geodesic knn regressor at x; € LUU is

A o 1 '
f-()(;) = }126];;;Z;Z;51 ZE:: )g

(xj,y;)eknng(x;)

(1)
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Geodesic knn regression - inductive case

What about new instances x ¢ LUU?
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Geodesic knn regression - inductive case

What about new instances x ¢ LUU?
» Find its Euclidean nearest neighbor x* € LUU
» The geodesic knn regression estimate at x is

)

() 1= Fx) = 7 (argminx =<1 ) (2

x'e LUU
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Geodesic knn regression

Minimax optimality under the manifold assumption

Suppose we are given

(i) A labeled sample {(x;, f(x;) + N'(0,02))}
where x; € M and f : M — R is Lipschitz.

1
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Geodesic knn regression

Minimax optimality under the manifold assumption

Suppose we are given

(i) A labeled sample {(x;, f(x;) + N'(0,02))}
where x; € M and f : M — R is Lipschitz.

(i) An unlabeled sample of m points.
(iii) A test point x.

1
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Geodesic knn regression

Minimax optimality under the manifold assumption

Suppose we are given
(i) A labeled sample {(x;, f(x;) + N'(0,02))}
where x; € M and f : M — R is Lipschitz.
(i) An unlabeled sample of m points.
(iii) A test point x.
Then we prove that geodesic knn regression obtains
the finite-sample minimax bound on the MSE.

1
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Definitions of manifold complexity

Definition: minimum radius of curvature

(M) =1/ max 15 (t)]]
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Definitions of manifold complexity

Definition: minimum radius of curvature
(M) =1/ max 15 (t)]]

Definition: minimum branch separation
Largest sy such that for every pair Vx,x' € M

x—X| <s = duxx)<rn
|
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Geodesic kNN regression

Minimax optimality under the manifold assumption
We assume that:

» M has bounded radius of curvature and branch
separation.

» Vx € M, r < R we have u(By(r)) > Qre.
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Geodesic kNN regression

Minimax optimality under the manifold assumption

We assume that:
» M has bounded radius of curvature and branch
separation.

» Vx € M, r < R we have u(By(r)) > Qre.

Theorem 1 (simplified)
The geodesic knn regressor f satisfies

& [(’?(X) = f(x))z} < cn a4 e MR,

where fp := frax — Ffmin-
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Proof sketch
Since 7(x) := f(x*) we have,
E|(F(x) — f(x))?] = E |(F(x) = F(x))?]
=8 | ()~ F) + (7x) = £(x0)
E|

~ -~

(*) ()
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Proof sketch (bound on (**))

Recall that Vr < R : u(By(r)) > Qrd.
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Proof sketch (bound on (**))

Recall that Vr < R : u(By(r)) > Qrd.
Using this and some calculus, we obtain,

(#) = B | (F(x') = F(x))

<c(n+m) 4 e Rmm g2
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Proof sketch (bound on (*))

Let (XU (x*), YU (x*)) denote the i-th closest
labeled sample to x* in terms of the graph distance.
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Proof sketch (bound on (*))

Let (XU (x*), YU (x*)) denote the i-th closest
labeled sample to x* in terms of the graph distance.

In this notation

k
£l * 1 ,n) (%
f(x)z;zvé (x")

——Zf x) + 0" (x7)
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Proof sketch (bound on (*))

Consider the (easier) noiseless case.
E|(F(x) = F(x")
= {(% > X)) — f(x*)) ]

How can we bound F(XY"(x)) — £(x*) ?
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Proof sketch (bound on (*))

We can use the Lipschitz-continuity of f to bound

FXE (7)) = F(x7) < Ldu(XE " (x),x")
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Proof sketch (bound on (*))

We can use the Lipschitz-continuity of f to bound
FXE(x)) = F(x) < Ldu(XE " (x).x")

Problem: X{"")(x") is close to x* in terms of the
graph distance but may be very far in terms of the
manifold distance!
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Proof sketch (bound on (*))
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Proof sketch (bound on (*))

Solution: Theorems B and C of [Tenenbaum, de
Silva, Langford (2000)] guarantee that

| < G6Xi X))

< <149 3
dm(Xi, X;) G)

hold for all i, j with probability > 1 — c,e=(tm),
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Proof sketch (bound on (*))

Conditioned on these inequalities, we can prove that

du (Xg’")(x*),x*) < Wy, (X/(\il’")(x*),x*) .
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Proof sketch (bound on (*))

Conditioned on these inequalities, we can prove that
du (XU (x7), x*) < B4 (XU (x7), x7
M G (X ),X > 7 54UM M (X ),X .

We obtain a bound on (*) using an extension of the
classical knn proof [Gyorfi et. al, 2002] to the
manifold setting.
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Efficient computation
of geodesic nearest
neighbors
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Efficient computation

Problem:
How to compute knng(x;) for all x; € LUU ?

Solution 1: Floyd-Warshall all-pairs shortest paths
» O(N3) where N = n+m

Solution 2: Run Dijkstra from all labeled nodes:
» O(n(Nlog N + |E|))
» Dense graph: O(nN?)
» Sparse graph: O(nNlog N)

We can do better! O(kN log N)
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Simultaneous Dijkstra - correctness

Let NLV(u, /) be the set of j nearest labeled vertices
to the vertex u
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Simultaneous Dijkstra - correctness

Let NLV(u, /) be the set of j nearest labeled vertices
to the vertex u

Lemma
Let v € V be a vertex and let s be its j-th nearest
labeled vertex. If s ~ u ~» v is a shortest path then

s € NLV(u, j).
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Algorithm 1

Q « PriorityQueue()
for ve V do
kNN[v] < Empty-List()
S, — ¢
if v e L then
insert(Q, (v, v), priority = 0)
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Algorithm 1 - continued

while Q # ¢ do
(seed, vo, dist) < pop-minimum(Q)
Sv < Sy, U {seed}
if length(kNN[v]) < k then
append (dist, seed) to kNN[v]
for all v € neighbors(v) do
if len(kNN[v]) < k and seed ¢ S, then
decrease-or-insert(Q, (seed, v),
priority = dist +w/(vp, v))



51/64

Efficient computation

Related works:

» Algorithm 1 extends the k = 1 algorithm of
Erwig (2000)

» Independently, Har-Peled (2016) proposed
Algorithm 1 and also described a variant
(Algorithm 2) which gives tighter guarantees
on the running time
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Efficient computation

1000 T T T T
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Applications
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Geodesic knn regression for indoor
localization

Antenna Array

(x,,3,)=(34,66)m

Tx Locations
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Indoor localization using WiFi fingerprints

Feature vectors are 48 x 48 complex matrices
computed by sampling the received signals at 6
antennas of a WiFi router. [Kupershtein, Wax &
Cohen (2013)]
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The labeled points were placed on a regular grid.
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Indoor localization using WiFi fingerprints

Feature vectors are 48 x 48 complex matrices
computed by sampling the received signals at 6
antennas of a WiFi router. [Kupershtein, Wax &
Cohen (2013)]

The labeled points were placed on a regular grid.
The unlabeled points were drawn at random.
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Indoor localization performance
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Indoor localization runtime

#unlabeled Laplacian Geodesic 7NN  Graph build

1000 7.6s 2.3s Os

10000 195s 7s 76s

100000 114min 56s 66min
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Indoor localization performance: real data

9
B
12t g
e
15} ol
181 gﬁ
21 el 1
®  |abeled locations
24 + unlabeled locations| -
® Wi-F Receiver

) ) | . . .
3 6 9 12 15 18 21 24 27 30
m
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Indoor localization performance: real data

Labeled grid n  knn Laplacian Geodesic knn
1.5m 73 1.49m 1.36m 1.11m
2.0m 48 2.27m 1.65m 1.49m

3m 23 341m 2.79m 2.41m




Facial pose estimation
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Facial pose estimation

Mean absolute error (deg)

e—e 1NN
¢—¢ Laplacian
NN\ B3 Geodesic KNN

Percent of labeled points
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In summary

Geodesic knn regression is:

» The first semi-supervised method that is
minimax optimal in the finite-sample sense

» Very fast to compute

» Obtains good empirical results on
low-dimensional manifolds.
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Graph semisupervised regression vs.
classical nonparametric regression

Graph method Classical analogue
Laplacian regularization | R = linear interpolation
R" =777
Laplacian eigenvector regr. Fourier regression
Multiscale wavelets Haar wavelet regression
Geodesic regression knn regression or
Kernel smoothing
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