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Supervised regression

Input:

I n labeled pairs (x1, y1), . . . , (xn, yn) ∈ RD × R

Assumptions:

I (xi , yi)
i .i .d .
∼ μ

I yi = f (xi) + noise

Output:

I Regression estimator f̂ : RD → R
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Semi-supervised regression

Input:

I n labeled instances (x1, y1), . . . , (xn, yn)

I m unlabeled instances xn+1, . . . xn+m

Output: (transductive) regression estimates

f̂ (xn+1), . . . , f̂ (xn+m)

Output: (inductive) regression estimator

f̂ : RD → R
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Method 1: Laplacian Regularization
[Zhu, Ghahramani, Lafferty 2003]

Given affinities wi ,j , find f̂ that minimizes

∑

i ,j

wi ,j

(
f̂ (xi)− f̂ (xj)

)2

= f̂ TLf̂

Subject to f̂ (xi) = yi for labeled points.
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Method 1: Laplacian Regularization
[Zhu, Ghahramani, Lafferty 2003]

Given affinities wi ,j , find f̂ that minimizes

∑

i ,j

wi ,j

(
f̂ (xi)− f̂ (xj)

)2

= f̂ TLf̂

Subject to f̂ (xi) = yi for labeled points.

Reminder: the (unweighted) graph Laplacian is
L = W −D where W are the edge weights and D is
the diagonal degree matrix Dii =

∑
j Wij .
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Method 1: Laplacian Regularization

Disadvantage: pathological behavior when the
number of unlabeled points →∞ [Nadler, Srebro,
Zhou 2009]
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Method 2: Laplacian eigenvector
regression
[Belkin&Niyogi (2004)]
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Method 2: Laplacian eigenvector
regression
[Belkin&Niyogi (2004)]

(i) Construct (weighted) graph Laplacian

(ii) Compute p Laplacian eigenvectors with
smallest eigenvalues

(iii) Find a linear combination of the eigenvectors
that approximates the labeled points
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Laplacian eigenvectors

Figure: All 64 Laplacian eigenvectors of an 8x8 grid (image by Devcore)
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Laplacian eigenvectors

Figure: First 5 Laplacian eigenvectors for points on a 2D
man-shaped manifold surface (image by Franck Hétroy)
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Method 3: Multiscale wavelets
[Gavish, Nadler, Coifman 2010]

(i) Construct a tree of point sets by hierarchical
partitioning.

(ii) Take Haar-like wavelet basis on tree.

(iii) Perform regression using this basis.
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Method 3: Multiscale wavelets
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Many other methods have been proposed
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Semi-supervised regression

Many other methods have been proposed

Empirically, unlabeled data helpful only on some
data sets

Better theoretical understanding needed
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Why should unlabeled data help?

A direct solution for clustered data: [Rigollet
(2007), Lafferty & Wasserman (2009)]:

I Estimate clusters.

I Compute the cluster-average response

Singh, Nowak & Zhu (2009) analyzed the potential
benefit of SSL in this setting.

Their key insight: unlabeled data can help
estimate cluster boundaries
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Why should unlabeled data help?
The manifold assumption:

I Points lie close to a low-dimensional manifold.
I Responses vary slowly w.r.t. the geodesic

distance.
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Why should unlabeled data help?

Main idea

Given enough data points, we can:

(i) Estimate the manifold geometry

(ii) Perform regression in dimension d instead of D
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Why should unlabeled data help?

Main idea

Given enough data points, we can:

(i) Estimate the manifold geometry

(ii) Perform regression in dimension d instead of D

Unlabeled data may be key to (i).
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A näıve approach:

(i) Estimate the intrinsic dimension d
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How can unlabeled data help?

A näıve approach:

(i) Estimate the intrinsic dimension d

(ii) Embed x1, . . . xn+m ↪→ Rd somehow

(iii) Apply classical methods in Rd

Problem: It is not always possible to faithfully
embed to dimension d .
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Lower bounds of nonparametric regression

Minimax lower-bound for the MSE:
Let L > 0 be a constant and let x ∈ RD be some
point. For any regression estimator f̂ : RD → R
there exists an L-Lipschitz function f and an
input distribution such that

E(f̂ (x)− f (x))2 ≥ cn−
2

2+D



20/64

Lower bound of nonparametric regression

Any estimator that satisfies for all f

E(f̂ (x)− f (x))2 ≤ c ′n−
2

2+D

is called minimax optimal. (e.g. knn regression)



21/64

Nonparametric regression on manifolds

Theorem: [Kpotufe (2011)]
If the points x1, . . . , xn ∈ RD are sampled from a
d -dimensional manifold and if f is Lipschitz then
classic knn regression satisfies

sup
x∈M

(
f̂knn(xi)− f (xi)

)2

= ÕP(n−
2

2+d )

Caveat: x1, . . . , xn must form a dense cover of M
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Nonparametric regression on manifolds

Theorem: [Niyogi (2013)]
There are manifolds for which semi-supervised
learning is provably better than supervised
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Our results
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Our results

We prove that if the number of unlabeled points is
sufficiently large then semi-supervised regression can
achieve the finite-sample minimax bound n−

2
2+d

This settles a conjecture by Goldberg, Zhu, Singh,
Xu & Nowak (2009).

Furthermore, we do this using a simple and fast
method that demonstrates good empirical
performance.
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Geodesic knn regression - intuition



26/64

Geodesic knn regression

Step 1
Estimate the manifold geodesic distance dM(xi , xj)
for every pair {(xi , xj) : xi ∈ L, xj ∈ L ∪ U}.



26/64

Geodesic knn regression

Step 1
Estimate the manifold geodesic distance dM(xi , xj)
for every pair {(xi , xj) : xi ∈ L, xj ∈ L ∪ U}.

Step 2
Apply knn regression using the estimated distances
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Step 1: estimate geodesic distances
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Step 1: estimate geodesic distances
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Step 2: geodesic knn regression

Step 2
Let knnG (xi) ⊆ L denote the set of k nearest
labeled neighbors to xi

The geodesic knn regressor at xi ∈ L ∪ U is

f̂ (xi) :=
1

|knnG (xi)|

∑

(xj ,yj)∈knnG (xi )

yj (1)
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Geodesic knn regression - inductive case

What about new instances x /∈ L ∪ U?
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Geodesic knn regression - inductive case

What about new instances x /∈ L ∪ U?

I Find its Euclidean nearest neighbor x∗ ∈ L∪U
I The geodesic knn regression estimate at x is

f̂ (x) := f̂ (x∗) = f̂

(

argmin
x′∈L∪U

‖x− x′‖

)

(2)
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Geodesic knn regression
Minimax optimality under the manifold assumption

Suppose we are given

(i) A labeled sample
{(

xi , f (xi) +N (0, σ2)
)}n

i=1
where xi ∈M and f :M→ R is Lipschitz.
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Geodesic knn regression
Minimax optimality under the manifold assumption

Suppose we are given

(i) A labeled sample
{(

xi , f (xi) +N (0, σ2)
)}n

i=1
where xi ∈M and f :M→ R is Lipschitz.

(ii) An unlabeled sample of m points.

(iii) A test point x.

Then we prove that geodesic knn regression obtains
the finite-sample minimax bound on the MSE.
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Definitions of manifold complexity

Definition: minimum radius of curvature

r0(M) := 1/ max
γ,t
‖γ̈(t)‖
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Definitions of manifold complexity

Definition: minimum radius of curvature

r0(M) := 1/ max
γ,t
‖γ̈(t)‖

Definition: minimum branch separation
Largest s0 such that for every pair ∀x, x′ ∈ M

‖x− x′‖ < s0 =⇒ dM(x, x′) ≤ πr0
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Geodesic kNN regression
Minimax optimality under the manifold assumption

We assume that:
I M has bounded radius of curvature and branch

separation.
I ∀x ∈M, r < R we have μ(Bx(r)) ≥ Qr d .
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Geodesic kNN regression
Minimax optimality under the manifold assumption

We assume that:
I M has bounded radius of curvature and branch

separation.
I ∀x ∈M, r < R we have μ(Bx(r)) ≥ Qr d .

Theorem 1 (simplified)

The geodesic knn regressor f̂ satisfies

E
[
(f̂ (x)− f (x))2

]
≤ cn−

2
2+d + c ′e−c ′′∙(n+m)f 2

D .

where fD := fmax − fmin.
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Proof sketch

Since f̂ (x) := f̂ (x∗) we have,

E
[
(f̂ (x)− f (x))2

]
= E

[
(f̂ (x∗)− f (x))2

]

= E

[(
(f̂ (x∗)− f (x∗)) + (f (x∗)− f (x))

)2
]

≤ 2E
[
(f̂ (x∗)− f (x∗))2

]

︸ ︷︷ ︸
(∗)

+2E
[
(f (x∗)− f (x))2

]

︸ ︷︷ ︸
(∗∗)

.
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Proof sketch (bound on (**))

Recall that ∀r ≤ R : μ(Bx(r)) ≥ Qr d .
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Proof sketch (bound on (**))

Recall that ∀r ≤ R : μ(Bx(r)) ≥ Qr d .

Using this and some calculus, we obtain,

(∗∗) = E
[
(f (x∗)− f (x))2

]

≤ c(n + m)−
2
d + e−QRd (n+m)f 2

D .
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Proof sketch (bound on (*))

Let (X
(i ,n)
G (x∗), Y

(i ,n)
G (x∗)) denote the i -th closest

labeled sample to x∗ in terms of the graph distance.
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Proof sketch (bound on (*))

Let (X
(i ,n)
G (x∗), Y

(i ,n)
G (x∗)) denote the i -th closest

labeled sample to x∗ in terms of the graph distance.

In this notation

f̂ (x∗) =
1

k

k∑

i=1

Y
(i ,n)
G (x∗)

=
1

k

k∑

i=1

f (X
(i ,n)
G (x∗)) + η

(i ,n)
G (x∗)
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Proof sketch (bound on (*))

Consider the (easier) noiseless case.

E
[
(f̂ (x∗)− f (x∗))2

]

= E





(
1

k

k∑

i=1

f (X
(i ,n)
G (x∗))− f (x∗)

)2




How can we bound f (X
(i ,n)
G (x∗))− f (x∗) ?
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Proof sketch (bound on (*))

We can use the Lipschitz-continuity of f to bound

f (X
(i ,n)
G (x∗))− f (x∗) ≤ LdM(X

(i ,n)
G (x∗), x∗)
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Proof sketch (bound on (*))

We can use the Lipschitz-continuity of f to bound

f (X
(i ,n)
G (x∗))− f (x∗) ≤ LdM(X

(i ,n)
G (x∗), x∗)

Problem: X
(i ,n)
G (x∗) is close to x∗ in terms of the

graph distance but may be very far in terms of the
manifold distance!
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Proof sketch (bound on (*))
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Proof sketch (bound on (*))

Solution: Theorems B and C of [Tenenbaum, de
Silva, Langford (2000)] guarantee that

1− δ ≤
dG (Xi , Xj)

dM(Xi , Xj)
≤ 1 + δ (3)

hold for all i , j with probability ≥ 1− cae
−cb(n+m).
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Proof sketch (bound on (*))

Conditioned on these inequalities, we can prove that

dM
(
X

(i ,n)
G (x∗), x∗

)
≤ 1+δ

1−δdM
(
X

(i ,n)
M (x∗), x∗

)
.
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Proof sketch (bound on (*))

Conditioned on these inequalities, we can prove that

dM
(
X

(i ,n)
G (x∗), x∗

)
≤ 1+δ

1−δdM
(
X

(i ,n)
M (x∗), x∗

)
.

We obtain a bound on (*) using an extension of the
classical knn proof [Györfi et. al, 2002] to the
manifold setting.
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Efficient computation
of geodesic nearest

neighbors
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Efficient computation
Problem:
How to compute knnG (xi) for all xi ∈ L ∪ U ?

Solution 1: Floyd-Warshall all-pairs shortest paths

I O(N3) where N = n + m

Solution 2: Run Dijkstra from all labeled nodes:

I O(n(N log N + |E |))
I Dense graph: O(nN2)

I Sparse graph: O(nN log N)

We can do better! O(kN log N)
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Dijkstra’s algorithm
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Dijkstra’s algorithm
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Simultaneous Dijkstra (k=1)
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Simultaneous Dijkstra - correctness

Let NLV(u, j) be the set of j nearest labeled vertices
to the vertex u
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Simultaneous Dijkstra - correctness

Let NLV(u, j) be the set of j nearest labeled vertices
to the vertex u

Lemma
Let v ∈ V be a vertex and let s be its j-th nearest
labeled vertex. If s  u  v is a shortest path then
s ∈ NLV(u, j).
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Algorithm 1

Q ← PriorityQueue()
for v ∈ V do

kNN[v ] ← Empty-List()
Sv ← φ
if v ∈ L then

insert(Q, (v , v), priority = 0)
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Algorithm 1 - continued

while Q 6= φ do
(seed, v0, dist) ← pop-minimum(Q)
Sv0 ← Sv0 ∪ {seed}
if length(kNN[v0]) < k then

append (dist, seed) to kNN[v0]
for all v ∈ neighbors(v0) do

if len(kNN[v ]) < k and seed /∈ Sv then
decrease-or-insert(Q, (seed, v),
priority = dist +w(v0, v))
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Efficient computation

Related works:

I Algorithm 1 extends the k = 1 algorithm of
Erwig (2000)

I Independently, Har-Peled (2016) proposed
Algorithm 1 and also described a variant
(Algorithm 2) which gives tighter guarantees
on the running time
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Efficient computation
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Applications
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Geodesic knn regression for indoor
localization
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Indoor localization using WiFi fingerprints

Feature vectors are 48 × 48 complex matrices
computed by sampling the received signals at 6
antennas of a WiFi router. [Kupershtein, Wax &
Cohen (2013)]
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Indoor localization using WiFi fingerprints

Feature vectors are 48 × 48 complex matrices
computed by sampling the received signals at 6
antennas of a WiFi router. [Kupershtein, Wax &
Cohen (2013)]

The labeled points were placed on a regular grid.
The unlabeled points were drawn at random.
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Indoor localization performance
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Indoor localization runtime

#unlabeled Laplacian Geodesic 7NN Graph build
1000 7.6s 2.3s 9s
10000 195s 7s 76s
100000 114min 56s 66min
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Indoor localization performance: real data

m
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Indoor localization performance: real data

Labeled grid n knn Laplacian Geodesic knn
1.5m 73 1.49m 1.36m 1.11m
2.0m 48 2.27m 1.65m 1.49m
3m 23 3.41m 2.79m 2.41m
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Facial pose estimation



61/64

Facial pose estimation
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In summary

Geodesic knn regression is:

I The first semi-supervised method that is
minimax optimal in the finite-sample sense

I Very fast to compute

I Obtains good empirical results on
low-dimensional manifolds.



63/64

Graph semisupervised regression vs.
classical nonparametric regression

Graph method Classical analogue
Laplacian regularization R⇒ linear interpolation

Rn ⇒???

Laplacian eigenvector regr. Fourier regression

Multiscale wavelets Haar wavelet regression

Geodesic regression knn regression or
Kernel smoothing
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Paper&code: http://moscovich.org


