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Abstract

We present a simple semi-supervised regression method
for data from an unknown manifold. We prove that given
a large unlabeled training set, it achieves the optimal
finite-sample bound on the MSE, as if the manifold ge-
ometry were known. Furthermore, it demonstrates good
empirical performance on manifold-structured data sets
and can be implemented efficiently.

Introduction

Input: labeled set of n pairs L = {(x1, y1), . . . , (xn, yn)}
and an unlabeled set of m points U = {xn+1, . . .xn+m}.
The points xi are assumed to be sampled i.i.d. from some
measure μ over RD and yi = f (xi) + noise.

Output (transductive): estimates f̂ (xn+1), . . . , f̂ (xn+m)

Output (inductive): regression estimator f̂ : RD → R.

We make two assumptions on the data:
(i) x1, . . . , xn+m lie on a d-dimensional
manifold M ⊂ RD.
(ii) The regression function f is Lips-
chitz in the manifold geodesic distances
|f (xi) − f (xj)| ≤ LdM(xi,xj).

Under these assumptions Kpotufe (2011) showed that as
n → ∞, standard knn regression achieves the minimax
bound on the MSE n− 2

2+d up to log factors. We show that
it is possible to obtain the finite-sample minimax bound
using a variant of knn regression which is based on esti-
mates of manifold geodesic distances.

Geodesic knn regression

Step 1: Connect every pair of close points by an edge
whose weight is their Euclidean distance, e.g.

w(xi,xj) =






‖xi − xj‖ if ‖xi − xj‖ < r

∞ otherwise.

Step 2: Compute dG, the graph shortest-path distances
for every pair {(xi,xj) : xi ∈ L, xj ∈ L ∪ U}. The dis-
tances dG uniformly approximate the manifold geodesic
distances (Tenenbaum et al., 2000).

Step 3: Let knnG(xi) ⊆ L denote the set of k nearest
labeled neighbors to xi, as determined by dG. Then for
every xi ∈ L ∪ U the geodesic knn regression estimate is

f̂ (xi) :=
1

|knnG(xi)|

∑

(xj,yj)∈knnG(xi)

yj. (1)

Inductive output: For a new instance x /∈ L ∪ U we
first find its Euclidean nearest neighbor x∗ from L ∪ U .
Then the geodesic knn regression estimate at x is

f̂ (x) := f̂ (x∗) = f̂



argmin
x′∈L∪U

‖x − x′‖



 .

Main result

We assume that the manifold M satisfies several con-
ditions and that the sampling measure μ satisfies, for
every x ∈ M and radius r ≤ R that μ(Bx(r)) ≥ Qrd.

Theorem Let x ∈ M be a point and let fD := fmax − fmin.
The MSE of the geodesic kNN regressor at x satisfies

E(f̂ (x) − f (x))2 ≤ cn− 2
2+d + c′e−c′′∙(n+m)f 2

D. (2)

Conclusion: The estimator f̂ obtains the finite-sample
minimax bound on the mean squared error.

Application: indoor localization
using WiFi fingerprints
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Efficient computation
For the transductive regression estimates (1) we need to
compute knnG(xi) for all xi ∈ L ∪ U . This can be done us-
ing all-pairs shortest-path algorithms or using Dijkstra’s
algorithm from each labeled point.
We describe a novel variant of Dijkstra’s algorithm

which simultaneously explores shortest paths from all
labeled vertices.

Algorithm Dense graph Sparse graph
Floyd-Warshall O(N 3) O(N 3)

n×Dijkstra O(nN 2) O(nN log N)

Simultaneous Dijkstra O(kN 2) O(kN log N)

The following table compares the empirical running time
of geodesic knn to that of Belkin and Niyogi (2004).

N Laplacian eigenbasis Geodesic 7NN
1000 7.6 sec 2.3 sec
10000 195 sec 7 sec
100000 114 min 56 sec
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