Minimax-optimal semi-supervised regression on unknown manifolds
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Abstract

We present a simple semi-supervised regression method
for data from an unknown manifold. We prove that given
a large unlabeled training set, it achieves the optimal
finite-sample bound on the MSE, as if the manifold ge-
ometry were known. Furthermore, it demonstrates good
empirical performance on manifold-structured data sets
and can be implemented efficiently.

Introduction

Input: labeled set of n pairs £ = {(xi,41),..., (Xn, Yn)}
and an unlabeled set of m points U = {x, 1,...Xim}-
The points x; are assumed to be sampled 1.1.d. from some
measure ; over R” and y; = f(x;) + noise.

Output (transductive): estimates f (Xn+1),;. L f (Xptm)
Output (inductive): regression estimator f : R” — R.

We make two assumptions on the data:
(1) x1,...,X,+n lie on a d-dimensional

manifold M C r”.
(i1) The regression function f is Lips-
chitz in the manifold geodesic distances

f(xi) = f(x)] < Ldm(xi, x;). i
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Under these assumptions Kpotufe (2011) showed that as
n — oo, standard knn regression achieves the minimax
bound on the MSE n =7 up to log factors. We show that
it 1s possible to obtain the finite-sample minimax bound
using a variant of knn regression which is based on esti-
mates of manifold geodesic distances.
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Geodesic knn regression

Step 1: Connect every pair of close points by an edge
whose weight is their Euclidean distance, e.g.

Ix; — x| 1 ||x; — x| <7

w(Xi7 Xj) — {

00 otherwise.

Step 2: Compute d, the graph shortest-path distances
for every pair {(x;,x;) : x; € £, x; € LUU}. The dis-
tances dg; uniformly approximate the manifold geodesic
distances (Tenenbaum et al., 2000).

Step 3: Let knng(x;) € L denote the set of k£ nearest
labeled neighbors to x;, as determined by d,. Then for
every X; € L UU the geodesic knn regression estimate is

1
 [knng(x;)]

f(x:) :

D Y- (1)

X;,y;)€knng(x;)

Inductive output: For a new instance x ¢ £ U U we
first find its Fuclidean nearest neighbor x* from £ U U.
Then the geodesic knn regression estimate at x is

Jx) = 1) = f (argmin x = ).

x'e LUU

Main result

We assume that the manifold M satisfies several con-
ditions and that the sampling measure ;. satisfies, for
every x € M and radius r < R that u(By(r)) > Qr-.

Theorem Let x € M be a point and let fp = f.x — fuin
The MSE of the geodesic kNN regressor at x satisfies

E(f(x) — f(x))* < en 20+ e £, (2)

Conclusion: The estimator f obtains the finite-sample
minimax bound on the mean squared error.

Application: indoor localization
using WiFi fingerprints
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Efficient computation

For the transductive regression estimates (1) we need to
compute knng(x;) for all x; € LUU. This can be done us-
ing all-pairs shortest-path algorithms or using Dijkstra’s
algorithm from each labeled point.

We describe a novel variant of Dijkstra’s algorithm
which simultaneously explores shortest paths from all
labeled vertices.

Algorithm Dense graph Sparse graph
Floyd-Warshall O(N?) O(N°?)
nxDijkstra O(nN?) O(nN log N)
Simultaneous Dijkstra O(kN?) O(kN log N)

The following table compares the empirical running time
of geodesic knn to that of Belkin and Niyogi (2004).

N Laplacian eigenbasis Geodesic 7NN

1000 7.6 sec 2.3 sec

10000 195 sec [ sec

100000 114 min Db sec
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