

Fast computation of boundary crossing probabilities for the empirical CDF

Amit Moscovich-Eiger, Boaz Nadler, Weizmann Institute of Science, Israel. amit.moscovich@weizmann.ac.il; boaz.nadler@weizmann.ac.il

Problem setup

Let \hat{F}_n be the empirical CDF of *n* draws from U[0,1] w.l.o.g. Given two functions $g, h : \mathbb{R} \to \mathbb{R}$, compute the non-crossing probability

$$\Pr\left[\forall t : g(t) < \hat{F}_n(t) < h(t)\right] \tag{1}$$

Several algorithms have been proposed over the years, all are $O(n^3)$. [Epanechnikov 1968, Steck 1971, Noé 1972, Friedrich & Schellhaas 1998, Khmaladze & Shinjikashvili 2001]. 1. Append *n* zeros to the end of Q_{t_i} and $\pi_{n(t_{i+1}-t_i)}$, forming Q^{2n} and π^{2n} . 2. Compute the FFT $\mathcal{F}\{Q^{2n}\}$ and $\mathcal{F}\{\pi^{2n}\}$.

3. Apply the convolution theorem C²ⁿ = F{Q²ⁿ ★ π²ⁿ} = F{Q²ⁿ} ⋅ F{π²ⁿ}, where ★ denotes cyclic convolution and ⋅ is pointwise multiplication.
4. Compute the inverse Fourier transform of C²ⁿ to obtain the vector Q_{ti+1}
\$\begin{bmatrix} \mathcal{F}^{-1}{C^{2n}}(m)\$ if \$a(t_{i+1}) < m/n < h(t_{i+1})\$</p>

 $Q_{t_{i+1}}(m) = \begin{cases} \mathcal{F}^{-1}\{C^{2n}\}(m) & \text{if } g(t_{i+1}) < m/n < h(t_{i+1}) \\ 0 & \text{otherwise.} \end{cases}$

Repeating this procedure for all *i* yields a total running time of $O(n^2 \log n)$. This is the fastest known algorithm for computing the two-sided crossing probability and the first to break the $O(n^3)$ barrier.

Equivalent formulation

Let $U_{1:n} \leq U_{2:n} \leq \ldots \leq U_{n:n}$ be the order statistics of n draws from U[0, 1]. Given arbitrary bounds $b_1, \ldots, b_n, B_1, \ldots, B_n \in \mathbb{R}$ compute the probability

 $\Pr\left[\forall i : b_i < U_{i:n} < B_i\right].$ (2)

Two-sided $O(n^3)$ **algorithm [F&S 1998]**

Lemma. \hat{F}_n satisfies $g(t) < \hat{F}_n(t) < h(t)$ for all t if and only if it satisfies these inequalities at all times when $n \cdot g(t)$ or $n \cdot h(t)$ cross an integer.

Definition. For any $s \in [0, 1]$ and any $m \in \{0, 1, 2, ...\}$, let $R(s, m) := \Pr\left[\forall t \in [0, s] : g(t) < \hat{F}_n(t) < h(t) \text{ and } \hat{F}_n(s) = \frac{m}{n}\right].$

Recursion relations. Let $0 = t_0 \le t_1 \le \ldots \le t_N = 1$ denote the sorted set of integer-crossing times of $n \cdot g(t)$ and $n \cdot h(t)$. The Chapman-Kolmogorov equations give the recursion relations of [1]:

 $R(t_{i+1},m) = \begin{cases} \sum_{\ell} R(t_i,\ell) \cdot \Pr\left[(t_i,\ell) \to (t_{i+1},m)\right] & \text{if } g(t_{i+1}) < m/n < h(t_{i+1}) \\ 0 & \text{otherwise.} \end{cases}$

where $\Pr[(t_i, \ell) \rightarrow (t_{i+1}, m)] = \Pr[\text{Binomial}(n - \ell, \frac{t_{i+1} - t_i}{1 - t_i}) = m - \ell].$ Solution. Eq. (1) is equal to R(1, n), which can be computed in $O(n^3)$.

New one-sided $O(n^2)$ algorithm

In the one-sided case (g < 0 or h > 1) an even faster algorithm is possible. The joint density of the random vector of uniform order statistics is

$$f(U_{1:n},\ldots,U_{n:n}) = \begin{cases} n! \text{ if } 0 \leq U_{1:n} \leq \ldots \leq U_{n:n} \leq 1, \\ 0 \text{ otherwise.} \end{cases}$$

Hence the one-sided variant of Eq. (2) is given by

$$\Pr\left[\forall i: b_i < U_{i:n}\right] = n! Vol\left\{\left(U_{1:n}, \dots, U_{n:n}\right) \mid \forall i: b_i < U_{i:n} \le U_{i+1:n}\right\} \\ = n! \int_{b_n}^1 dU_{n:n} \int_{b_{n-1:n}}^{U_{n:n}} dU_{(n-1)} \dots \int_{b_2}^{U_{3:n}} dU_{2:n} \int_{b_1}^{U_{2:n}} dU_{1:n}$$

Numerically evaluating this integral from right to left takes $O(n^2)$ time. A naïve implementation fails at $n \approx 150$ due to numerical errors, but with some effort we have been able to get up to $n \approx 50,000$. [3]

Application: p-value computation for goodness-of-fit statistics

The p-value of several sup-type continuous goodness-of-fit statistics directly translates to a probability of the form of Eq. (1). Hence we can compute such *p*-values in $O(n^2 \log n)$ time. The following table demonstrates that this improvement is not merely theoretical but yields a significant reduction in running times.

Figure 1: (left panel) **x** marks the i/n crossing points. \hat{F}_n crosses one of the boundaries if and only if it crosses an **x** mark; (right panel) Layer graph representing the entries $R(t_i, m)$.

Two-sided $O(n^3)$ algorithm [K&S 2001]

Lemma. The distribution of the stochastic process $n \cdot \hat{F}_n(t)$ is identical to that of a Poisson process $\xi_n(t)$ with intensity n conditioned on $\xi_n(1) = n$.

Definition. For any $s \in [0, 1]$ and any $m \in \{0, 1, 2, ...\}$, let

 $Q(s,m) := \Pr\left[\forall t \in [0,s] : g(t) < \frac{1}{n}\xi_n(t) < h(t) \text{ and } \xi_n(s) = m\right].$

Recursion relations. Similarly to the previous algorithm, the Chapman-Kolmogorov equations give the recursive relations of [2]:

 $Q(t_{i+1}, m) = \begin{cases} \sum_{\ell} Q(t_i, \ell) \cdot \Pr\left[Z_i = m - \ell\right] & \text{if } g(t_{i+1}) < m/n < h(t_{i+1}) \\ 0 & \text{otherwise} \end{cases}$

Two-sided	n = 4000	n = 16,000	n = 64,000	n = 256,000
K&S 2001	0.5 sec	8 sec	94 sec	18 minutes
$O(n^2 \log n)$ algorithm	0.3 sec	$2 \sec$	$15 \mathrm{sec}$	117 sec
One-sided				
K&S 2001	45 sec	24 minutes	18 hours	weeks
$O(n^2 \log n)$ algorithm	$2 \sec$	29 sec	9 minutes	3 hours
$O(n^2)$ algorithm	1.3 sec	19 sec	n/a	n/a

Table 1: Running times for computing *p*-values of the M_n goodness-of-fit statistics of Berk & Jones.

Summary

State-of-the-art O(n² log n) algorithm for computing the two-sided crossing probability of empirical CDFs and Poisson processes.
Fast O(n²) algorithm for the one-sided case.

• Potential applications include: p-value and power calculations for

where Z_i is a Poisson random variable with intensity $n(t_{i+1} - t_i)$. Solution. Apply the lemma to obtain

 $\Pr\left[\forall t : g(t) < \hat{F}_n(t) < h(t)\right] = Q(1, n) / \Pr\left[\operatorname{Poisson}(n) = n\right].$

Computing Q(1,n) still requires $O(n^3)$ operations.

New two-sided $O(n^2 \log n)$ algorithm

Denote $Q_{t_i} = (Q(t_i, 0), \dots, Q(t_i, n))$ and $\pi_{\lambda} = (\Pr[Z_{\lambda} = 0], \dots, \Pr[Z_{\lambda} = n])$ where Z_{λ} is a Poisson random variable with expected value λ .

Key idea: the vector $Q_{t_{i+1}}$ is nothing but a truncated linear convolution of Q_{t_i} and $\pi_{n(t_{i+1}-t_i)}$. Hence, using the circular convolution theorem and the Fast Fourier Transform we can compute $Q_{t_{i+1}}$ in $O(n \log n)$ time.

goodness-of-fit statistics, construction of α-level confidence bands for distribution functions, analysis of boundary crossing and first passage of a Brownian motion, queuing theory, sequential testing...
Efficient C++ code at: http://www.wisdom.weizmann.ac.il/~amitmo

References

- [1] Thomas Friedrich and Helmut Schellhaas. Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test. *Statistical papers*, 39:361–375, 1998.
- [2] Estate Khmaladze and Eka Shinjikashvili. Calculation of noncrossing probabilities for poisson processes and its corollaries. *Advances in applied probability*, 33:702– 716, 2001.
- [3] Amit Moscovich-Eiger, Boaz Nadler, and Clifford Spiegelman. On the exact Berk-Jones statistics and their p-value calculation. *ArXiv e-prints*, June 2015.
- [4] Amit Moscovich-Eiger and Boaz Nadler. Fast calculation of boundary crossing probabilities for Poisson processes. *ArXiv e-prints*, March 2015.