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Problem setup

Let F, be the empirical CDF of n draws from U[0, 1] w.l.o.g. Given two
functions ¢, h : R — R, compute the non-crossing probability

Pth g()<F()<h()_ (1)

Several algorithms have been proposed over the years, all are O(n?).
[Epanechnikov 1968, Steck 1971, Noé 1972, Friedrich & Schellhaas
1998, Khmaladze & Shinjikashvili 2001].

Equivalent formulation

Let Uy, < Uy, < ... < U,, be the order statistics of n draws from U0, 1].
Given arbitrary bounds b;,...,b,, B1, ..., B, € R compute the probability

Pr [\V/Z : bz < Uzn < Bz] : (2)

Two-sided O(n’) algorithm [F&S 1998]

Lemma. F, satisfies g(t) < F,(t) < h(t) for all ¢ if and only if it satisfies
these inequalities at all times when n - g(¢) or n - h(t) cross an integer.

Definition. For any s € [0, 1] and any m € {0,1,2,...}, let
R(s,m) := Pr [Vt e [0,s]: g(t) < Fo(t) < h(t) and F,(s) = %} .
Recursion relations. Let 0 = ¢, < ¢; < ... <ty = 1 denote the sorted set of

integer-crossing times of n - g(¢) and n - h(t). The Chapman-Kolmogorov
equations give the recursion relations of [1]:

(Zz R(t;, £) - Pr|(t;,€) — (tir1,m)] if g(ti1) < m/n < h(ti)

R tl , M) — < .
(Fir1,m) 0 otherwise.

where Pr|(t;,{) — (t;11,m)] = Pr [Bmomlal(n A tt) m — 4.

Solution. Eq. (1) is equal to R(1,n), which can be computed in O(n’).
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Figure 1: (left panel) x marks the i/n crossing points. F), crosses one of the boundaries if and only if it
crosses an x mark; (right panel) Layer graph representing the entries R(t;, m).

Two-sided O(n’) algorithm [K&S 2001}

Lemma. The distribution of the stochastic process n - F,,(¢) is identical to
that of a Poisson process &,(t) with intensity n conditioned on &,(1) = n.

Definition. For any s € [0, 1] and any m € {0,1,2,...}, let
Q(s,m) = Pr [Vt € 0,8] : g(t) < =&.(t) < h(t) and &,(s) = m

Recursion relations. Similarly to the previous algorithm, the Chapman-
Kolmogorov equations give the recursive relations of [2]:

(Y0 QUtn0)-Pr(Zi=m—1] if gltisy) < m/n < h(tis)
0 otherwise

Q(tiy1,m) =

\

where Z; is a Poisson random variable with intensity n(¢,.1 — t;).
Solution. Apply the lemma to obtain

Pr |Vt : g(t) < F,(t) < h(t)| = Q(1,n)/ Pr[Poisson(n) = n].
Computing Q(1,n) still requires O(n°) operations.

New two-sided O(n”logn) algorithm

Denote );, = (Q(%;,0),...,Q(t;,n)) and 7w, = (Pr|Z,=0],...,Pr|Z, =n|)
where 7, is a Poisson random variable with expected value .

Key idea: the vector (), , 1s nothing but a truncated linear convolution of
@y, and 7, ). Hence, using the circular convolution theorem and the
Fast Fourier Transform we can compute ();, , in O(nlogn) time.

1. Append n zeros to the end of @, and 7, ), forming *" and 7"
2. Compute the FFT F{Q*"} and F{r*"}.

3. Apply the convolution theorem C** = F{Q*" x 7*"} = F{Q*"} - F{x*"},
where x denotes cyclic convolution and - is pointwise multiplication.

4. Compute the inverse Fourier transform of C*" to obtain the vector Q;.

Q1 (m) = F-HC™Y(m) if g(tiy1) < m/n < h(ti)
S 0 otherwise.

Repeating this procedure for all i yields a total running time of O(n*logn).
This is the fastest known algorithm for computing the two-sided crossing
probability and the first to break the O(n®) barrier.

New one-sided O(n*) algorithm

In the one-sided case (¢ < 0 or h > 1) an even faster algorithm is possible.
The joint density of the random vector of uniform order statistics is

'lfO<Un <U,, <1
FWiny -y Upn) = {" < Upp < <

0 otherwise.
Hence the one-sided variant of Eq. (2) is given by

Pr{Vi:b; < Upp = n'WVol{(Uin,...,Unpn) | Vi:b; < Uy < U1}
n:n U3:n UQ:n
— n'/ dUnn/ n 1) dUZ:n dU12n°

n 1:n b2 bl
Numerically evaluating this integral from right to left takes O(n?) time.
A naive implementation fails at n ~ 150 due to numerical errors, but with
some effort we have been able to get up to n ~ 50, 000. [3]

Application: p-value computation for
goodness-of-fit statistics

The p-value of several sup-type continuous goodness-of-fit statistics di-
rectly translates to a probability of the form of Eq. (1). Hence we can
compute such p-values in O(n*logn) time. The following table demon-
strates that this improvement is not merely theoretical but yields a sig-
nificant reduction in running times.

Two-sided n=4000 n = 16,000 n = 64,000 n = 256, 000
K&S 2001 0.5 sec 8 sec 94 sec 18 minutes
O(n*logn) algorithm 0.3 sec 2 sec 15 sec 117 sec
One-sided
K&S 2001 45 sec 24 minutes 18 hours weeks
O(n*logn) algorithm 2 sec 29 sec 9 minutes 3 hours
O(n?) algorithm 1.3 sec 19 sec n/a n/a

Table 1: Running times for computing p-values of the M, goodness-of-fit statistics of Berk & Jones.

Summary

o State-of-the-art O(n’logn) algorithm for computing the two-sided
crossing probability of empirical CDFs and Poisson processes.

e Fast O(n?) algorithm for the one-sided case.

e Potential applications include: p-value and power calculations for
goodness-of-fit statistics, construction of a-level confidence bands for
distribution functions, analysis of boundary crossing and first passage
of a Brownian motion, queuing theory, sequential testing...

e Efficient C++ code at: http:/ www.wisdom.weizmann.ac.il/"amitmo
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