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Problem setup
Let F̂n be the empirical CDF of n draws from U [0, 1] w.l.o.g. Given two
functions g, h : R→ R, compute the non-crossing probability

Pr
[
∀t : g(t) < F̂n(t) < h(t)

]
(1)

Several algorithms have been proposed over the years, all are O(n3).
[Epanechnikov 1968, Steck 1971, Noé 1972, Friedrich & Schellhaas
1998, Khmaladze & Shinjikashvili 2001].

Equivalent formulation

Let U1:n ≤ U2:n ≤ . . . ≤ Un:n be the order statistics of n draws from U [0, 1].
Given arbitrary bounds b1, . . . , bn, B1, . . . , Bn ∈ R compute the probability

Pr [∀i : bi < Ui:n < Bi] . (2)

Two-sided O(n3) algorithm [F&S 1998]

Lemma. F̂n satisfies g(t) < F̂n(t) < h(t) for all t if and only if it satisfies
these inequalities at all times when n ∙ g(t) or n ∙ h(t) cross an integer.

Definition. For any s ∈ [0, 1] and any m ∈ {0, 1, 2, . . .}, let

R(s,m) := Pr
[
∀t ∈ [0, s] : g(t) < F̂n(t) < h(t) and F̂n(s) = m

n

]
.

Recursion relations. Let 0 = t0 ≤ t1 ≤ . . . ≤ tN = 1 denote the sorted set of
integer-crossing times of n ∙ g(t) and n ∙ h(t). The Chapman-Kolmogorov
equations give the recursion relations of [1]:

R(ti+1,m) =






∑
` R(ti, `) ∙ Pr [(ti, `) → (ti+1,m)] if g(ti+1) < m/n < h(ti+1)

0 otherwise.

where Pr [(ti, `) → (ti+1,m)] = Pr
[
Binomial(n − `, ti+1−ti

1−ti
) = m − `

]
.

Solution. Eq. (1) is equal to R(1, n), which can be computed in O(n3).
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Figure 1: (left panel) x marks the i/n crossing points. F̂n crosses one of the boundaries if and only if it
crosses an x mark; (right panel) Layer graph representing the entries R(ti,m).

Two-sided O(n3) algorithm [K&S 2001]

Lemma. The distribution of the stochastic process n ∙ F̂n(t) is identical to
that of a Poisson process ξn(t) with intensity n conditioned on ξn(1) = n.

Definition. For any s ∈ [0, 1] and any m ∈ {0, 1, 2, . . .}, let

Q(s,m) := Pr
[
∀t ∈ [0, s] : g(t) < 1

nξn(t) < h(t) and ξn(s) = m
]
.

Recursion relations. Similarly to the previous algorithm, the Chapman-
Kolmogorov equations give the recursive relations of [2]:

Q(ti+1,m) =






∑
` Q(ti, `) ∙ Pr [Zi = m − `] if g(ti+1) < m/n < h(ti+1)

0 otherwise

where Zi is a Poisson random variable with intensity n(ti+1 − ti).
Solution. Apply the lemma to obtain

Pr
[
∀t : g(t) < F̂n(t) < h(t)

]
= Q(1, n)/ Pr [Poisson(n) = n] .

Computing Q(1,n) still requires O(n3) operations.

New two-sided O(n2 log n) algorithm
Denote Qti = (Q(ti, 0), . . . , Q(ti, n)) and πλ = (Pr [Zλ = 0] , . . . , Pr [Zλ = n])
where Zλ is a Poisson random variable with expected value λ.

Key idea: the vector Qti+1
is nothing but a truncated linear convolution of

Qti and πn(ti+1−ti). Hence, using the circular convolution theorem and the
Fast Fourier Transform we can compute Qti+1

in O(n log n) time.

1. Append n zeros to the end of Qti and πn(ti+1−ti), forming Q2n and π2n.

2. Compute the FFT F{Q2n} and F{π2n}.

3. Apply the convolution theorem C2n = F{Q2n ? π2n} = F{Q2n} ∙ F{π2n},
where ? denotes cyclic convolution and ∙ is pointwise multiplication.

4. Compute the inverse Fourier transform of C2n to obtain the vector Qti+1

Qti+1
(m) =






F−1{C2n}(m) if g(ti+1) < m/n < h(ti+1)

0 otherwise.

Repeating this procedure for all i yields a total running time of O(n2 log n).
This is the fastest known algorithm for computing the two-sided crossing
probability and the first to break the O(n3) barrier.

New one-sided O(n2) algorithm
In the one-sided case (g < 0 or h > 1) an even faster algorithm is possible.
The joint density of the random vector of uniform order statistics is

f (U1:n, . . . , Un:n) =

{
n! if 0 ≤ U1:n ≤ . . . ≤ Un:n ≤ 1,
0 otherwise.

Hence the one-sided variant of Eq. (2) is given by

Pr [∀i : bi < Ui:n] = n!V ol{(U1:n, . . . , Un:n) | ∀i : bi < Ui:n ≤ Ui+1:n}

= n!
∫ 1

bn

dUn:n

∫ Un:n

bn−1:n

dU(n−1) . . .
∫ U3:n

b2

dU2:n

∫ U2:n

b1

dU1:n .

Numerically evaluating this integral from right to left takes O(n2) time.
A naı̈ve implementation fails at n ≈ 150 due to numerical errors, but with
some effort we have been able to get up to n ≈ 50, 000. [3]

Application: p-value computation for
goodness-of-fit statistics
The p-value of several sup-type continuous goodness-of-fit statistics di-
rectly translates to a probability of the form of Eq. (1). Hence we can
compute such p-values in O(n2 log n) time. The following table demon-
strates that this improvement is not merely theoretical but yields a sig-
nificant reduction in running times.

Two-sided n = 4000 n = 16, 000 n = 64, 000 n = 256, 000

K&S 2001 0.5 sec 8 sec 94 sec 18 minutes
O(n2 log n) algorithm 0.3 sec 2 sec 15 sec 117 sec

One-sided
K&S 2001 45 sec 24 minutes 18 hours weeks

O(n2 log n) algorithm 2 sec 29 sec 9 minutes 3 hours
O(n2) algorithm 1.3 sec 19 sec n/a n/a

Table 1: Running times for computing p-values of the Mn goodness-of-fit statistics of Berk & Jones.

Summary

•State-of-the-art O(n2 log n) algorithm for computing the two-sided
crossing probability of empirical CDFs and Poisson processes.

•Fast O(n2) algorithm for the one-sided case.

•Potential applications include: p-value and power calculations for
goodness-of-fit statistics, construction of α-level confidence bands for
distribution functions, analysis of boundary crossing and first passage
of a Brownian motion, queuing theory, sequential testing...

•Efficient C++ code at: http://www.wisdom.weizmann.ac.il/˜amitmo
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