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Background
Let x1, . . . , xn be i.i.d samples from a distributionF .
Goodness-of-fit problem:decide between the null hypothesis
H0 : F = F0 and an alternative hypothesisH1 : F 6= F0.

Many tests forcontinuousgoodness-of-fit follow these steps:

1. Transform the samples:ui = F0(xi).

2. Sortu1, . . . , un to obtainu(1) ≤ . . . ≤ u(n).

3. Compute some test statisticT (u(1), . . . , u(n)).

4.T > threshold=⇒ reject the null hypothesis.

Example.Kolmogorov-Smirnov test [1933]:
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Limitation: Lack of sensitivity at the tails of the distribution.

Motivation
When is tail sensitivity important?

1.Detecting rare and weak contaminationsusing multiple sensors.
Suppose that in the event of a contamination the output of a small
set of sensors is slightly shifted upwards. In that case, contamina-
tions manifest themselves as a small change in the upper tail of the
null distribution.

2.Analyzing heterogeneous experiments.We test a drug onN pa-
tients, obtainingp-valuesp1, . . . , pN . Suppose this drug affects
only n � N patients with specific unknown genes, and has no
effect on the rest. In that case, most of thep-values are drawn
i.i.d U [0, 1] but a small subset is drawn from some stochastically
smaller distribution.

3.Modeling extreme eventssuch as 100-year floods. In such cases,
recorded data is used to fit the parameters of ageneralized extreme
value, power-law, or similar distribution. The result is used to esti-
mate the probability of extreme events, even those larger than any
recorded sample. Goodness-of-fit statistics can be used to give a
numerical score for the match between the resulting distribution
and the data at hand. Clearly, in such cases we care mostly about
the upper tail of the distribution.

Following the 2011 T̄ohoku earthquake, an enormous 14 meter high tsunami

wave destroyed the emergency power generators of the Fukushima Daiichi

nuclear power plant resulting in the meltdown of 3 nuclear reactors. The plant

was designed to withstand waves of up to 5.7 meters only.

Figure 1: Aftermath of the 2011 T̄ohoku earthquake and tsunami. Photo by
Douglas Sprott licensed under Creative Commons (CC BY-NC 2.0)

Analysis

Ancient lemma. Let U1, ..., Un ∼ U [0, 1] be i.i.d random variables
and letU(1) ≤ ... ≤ U(n) denote their order statistics. Then

U(i) ∼ Beta(i, n − i + 1).

In particular,E[U(i)] = i
n+1, Var(U(i)) =

i(n−i+1)
(n+1)2(n+2)

.
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Figure 2: Distributions of some order statistics(n = 100)

Kolmogorov-Smirnov:
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Limitation: Var(U(i)) depends oni, largest fori = n/2.
=⇒ Low tail sensitivity.

Higher-Criticism [2004]:

HC = max
i

E[U(i)] − u(i)

stdev[U(i)]
(1 + O(1/n)) .

Limitation: standardizedshapeof U(i) depends oni. Hence, HC
does not equally calibrate deviations at different indices.

Theorem. [Keilson&Sumita]

1. For any fixedc ∈ (0, 1), taking i = cn and lettingn → ∞, the
distribution Beta(i, n − i + 1) converges to a Gaussian.

2. Fixing i, asn → ∞, Beta(i, n − i + 1) does not converge to a
Gaussian but instead to an extreme value distribution.

New test statistic
Idea: Compute thep-value of eachu(i). Rather than considering the
largest deviation, look for the moststatistically significantdeviation
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i
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CKS = min(CKS−, CKS+)

Asymptotics

Theorem. If X1, . . . , Xn
i.i.d.
∼ F0 then
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If X1, . . . , Xn
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Corollary: CKS is consistent.

Computing p-values
Following classical results [Durbin 1973], we can express the null
distribution of CKS+ using repeated integration.

Theorem. Let Ln
i (c) denote the inverse regularized incomplete Beta

function, satisfying
∫ Ln

i (c)
0 fi,n−i+1(x)dx = c. Then

Pr(CKS+ ≥ c|H0) = n!
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Using this formula, a newO(n2) numerical procedure for computing
p-values of the one-sided CKS+ statistic was derived.

For computingp-values of the two-sided CKS one may either:

1. Perform exact computation via Noé’s recursion -O(n3).

2. Approximate thep-value, via our one-sidedO(n2) algorithm,
based on the following theorem.

Theorem. Let qc = Pr[CKS+ ≤ c | H0]. Then

2qc − q2
c ≤ Pr[CKS≤ c | H0] ≤ 2qc.

Furthermore,Pr [CKS≤ c | H0]
n→∞
−−−−→ 2qc − q2

c.

Handling rounded samples
Suppose the original observations are rounded to the nearest integer.
Question:Can we still apply continuous goodness-of-fit?

Let x = (x1, . . . , xn) be an i.i.d vector of samples and letx̃ denote
the rounded samples. Define

x
↓
i = x̃i −

1
2 and x

↑
i = x̃i + 1

2.

Clearly,x↓ ≤ x ≤ x↑ . Due to the monotonicity of CKS+

CKS+(x↓) ≤ CKS+(x) ≤ CKS+(x↑),

and similarly

CKS−(x↑) ≤ CKS−(x) ≤ CKS−(x↓).

Thus,

min{CKS−(x↑), CKS+(x↓)} ≤ CKS(x) ≤ min{CKS−(x↓), CKS+(x↑)}.

Conclusion:the p-value of a set of samples can be bounded given
only rounded observations.

Finite sample results
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Figure 3: Power comparisons for detecting lack-of-fit to a standard Gaussian dis-
tribution (at significance levelα = 1%) with n = 100 samples. (left panel) change
in the mean of the distribution; (right panel) change in the variance.
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Figure 4: Comparison of tests for detecting rare-weak normal mixtures
(1 − ε)N (0, 1) + εN (μ, 1) vs. N (0, 1). Colored blobs represent regions where the
misdetection rate of the second-best test divided by that of the best test was larger
than 1.1. The dark centers signify regions where this ratio was larger than 1.5. The
grey band delineates the zone where misdetection is in the range0.1% − 80%. The
dotted line is the asymptotic detection boundary.

Main contributions
• CKS, a consistent two-sided goodness-of-fit test with good empir-

ical performance and asymptotically optimal detection of certain
types of tail perturbations.

• New O(n2) algorithm for computingp-values of the CKS+ and
CKS− statistics. This algorithm applies to other one-sided
goodness-of-fit statistics as well.

• Method for estimating thep-value of CKS inO(n2) operations.

• New technique for handling rounded samples. Extends to other
goodness-of-fit tests and more complex transformations

Supporting material

Preprint and code available at
http://www.wisdom.weizmann.ac.il/ amitmo/
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